Skip to main content

Tissue Engineering and Artificial Organ

  • Chapter
  • First Online:
Basic and Applied Aspects of Biotechnology

Abstract

Tissue engineering is an exciting technique, which has the potential to create tissues and organs de novo. Tissue engineering was defined in 1988 as “application of the principles and methods of engineering and life sciences toward fundamental understanding of structure–function relationship in normal and pathological mammalian tissues and the development of biological substitutes for the repair or regeneration of tissue or organ function.” It was later summarized as “an interdisciplinary field which involves fundamentals of life sciences, medical sciences, and principles of material sciences, which can provide a functional substitute for damaged or diseased organ restoring, maintaining, or improving tissue function or a whole organ.” The existence of tissue engineering dates to the sixteenth century, when complex skin flaps were used to replace the nose. Initially, the field was recognized as a subfield of biomaterials. Most definitions of tissue engineering cover a broad range of applications; in practice, the term is closely associated with applications that repair or replace portions of or whole tissues (i.e., bone, cartilage, blood vessels, bladder, skin, and so on). It has the potential to produce a supply of immunologically tolerant “artificial” organ and tissue substitutes that can grow in the patient.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aebischer P, Tan SA, Deglon N, Heyd B, Zurn A, Baetge E, Sagot Y, Kato AJ (1995) Encapsulation of neurotrophic factor-releasing cells for the treatment of neurodegenerative diseases. Restor Neurol Neurosci 8:65–66

    CAS  Google Scholar 

  2. Ahsan T, Nerem RM (2005) The science, the technology, and the industry. Orthod Craniofacial Res 8:134

    Article  CAS  Google Scholar 

  3. Andriano KP, Tabata Y, Ikada Y, Heller J (1999) In vitro and In vivo comparison of bulk and surface hydrolysis in absorbable polymer scaffolds for tissue engineering. J Biomed Mater Res (Appl Biomater) 48:602–612

    Article  CAS  Google Scholar 

  4. Awad HA, Butler DL, Boivin GP, Smith FN, Malaviya P, Huibregtse B, Caplan AI (1999) Autologous mesenchymal stem cell-mediated repair of tendon. Tissue Eng 5:267–277

    Article  CAS  Google Scholar 

  5. Black AF, Berthod F, L’Heureux N, Germain L, Auger FA (1998) In vitro reconstruction of a human capillary-like network in a tissue-engineered skin equivalent. FASEB J 12:1331–1340

    CAS  Google Scholar 

  6. Blight AR (1999) Presentation. Pittsburgh: Cambridge HealthTech Institute’s 2nd annual tissue engineering/regenerative healing/ stem cell biology meeting. Oct 3–5.

    Google Scholar 

  7. Bohi KS, Shon J, Rutherford B, Mooney DJ (1998) Role of synthetic extracellular matrix in development of engineered dental pulp. J Biomater Sci Polym Ed 9:749–764

    Article  Google Scholar 

  8. Borkenhagen M, Stoll RC, Neuenschwander P, Suter UW, Aebischer P (1998) In vivo performance of a new biodegradable polyester urethane system used as a nerve guidance channel. Biomaterials 19:2155–2165

    Article  CAS  Google Scholar 

  9. Bruin P, Smedinga J, Pennings AJ, Jonkman MF (1990) Biodegradable lysine diisocyanate-based poly(glycolide-co-ε-caprolactone)-urethane network in artificial skin. Biomaterials 11:191–295

    Article  Google Scholar 

  10. Burg KJL, Porter S, Kellam JF (2000) Biomaterials development for bone tissue engineering. Biomaterials 21:2347–2359

    Article  CAS  Google Scholar 

  11. Cao Y, Vacanti JP, Ma X, Paige KT, Upton J, Chowanski Z, Schloo B, Langer R, Vacanti CA (1994) Generation of neo-tendon using synthetic polymers seeded with tenocytes. Transplant Proc 26:3390–3392

    CAS  Google Scholar 

  12. Chapekar MS (2000) Tissue engineering: challenges and opportunities. J Biomed Mater Res 53:617–620

    Article  CAS  Google Scholar 

  13. Chen SC, Mullon C, Kahaku E, Watanabe F, Middleton Y, Arkadopoulos N, Demetriou AA (1997) Bioartificial organs: science, medicine, and technology. Ann N Y Acad Sci 831:350–360

    Article  CAS  Google Scholar 

  14. Chu CC (1981) Hydrolytic degradation of polyglycolic acid: tensile strength and crystallinity study. J Appl Polym Sci 26:1727–1734

    Article  CAS  Google Scholar 

  15. Cutright D, Beasley J, Perez B (1971) Histologic comparison of polylactic acid sutures. Oral Surg 32:165–173

    Article  CAS  Google Scholar 

  16. Domb AJ (1989) Poly(propylene glycol fumarate) compositions for biomedical applications. United States Patent 4888(413):1–31

    Google Scholar 

  17. Duarte ARC, Mano JF, Reis RL (2010) Preparation of Chitosan scaffolds for tissue engineering using supercritical fluid technology. Mater Sci Forum 636:22–25

    Article  Google Scholar 

  18. Dubey et al (2015) Graphene: a versatile carbon-based material for bone tissue engineering. Stem Cells Int. doi:10.1155/2015/804213

    Google Scholar 

  19. Fabiani JN, Dreyfus GD, Marchand M, Jourdan J, Aupart M, Latremouille C, Chardigny C, Carpenter AF (1995) The autologous tissue cardiac valve: a new paradigm for heart valve replacement. Ann Thorac Surg 60:189–194

    Article  Google Scholar 

  20. Germain L, Auger FA, Grandbois E, Guignard R, Giasson M, Boisjoly H, Guerin SL (1999) Reconstructed human cornea produced in vitro by tissue engineering. Pathobiology 67:140–147

    Article  CAS  Google Scholar 

  21. Gibbons DF (1992) Tissue response to resorbable synthetic polymers. In: Plank H, Dauner M, Renardy M (eds) Degradation phenomena on polymeric biomaterials. Springer Verlag, New York, pp 97–104

    Chapter  Google Scholar 

  22. Gilding DK, Reed AM (1979) Biodegradable polymers for use in surgery-polyglycolic/poly(acetic acid) homo- and copolymers: 1. Polymer 20:1459–1464

    Article  CAS  Google Scholar 

  23. Gogolewski S, Pennings AJ (1982) Biodegradable materials of polylactides, 4 Porous biomedical materials based on mixtures of polylactides and polyurethanes. Makromol Chem Rapid Commun 3:839–845

    Article  CAS  Google Scholar 

  24. Goldstein S (1999) Pittsburgh: Cambridge HealthTech Institute’s 2nd annual tissue engineering /regenerative healing/stem cell biology meeting. Oct 3–5.

    Google Scholar 

  25. Gunatillake PA, Adhikari R (2003) Biodegradable synthetic polymers for tissue engineering. Eur Cells Mater 5:1–16

    CAS  Google Scholar 

  26. Hadlock T, Singh S, Vacanti JP, McLaughlin BJ (1999) Ocular cell monolayers cultured on biodegradable substrates. Tissue Eng 5:187–196

    Article  CAS  Google Scholar 

  27. Kasper DL, Braunwald E, Fauci AS, Hauser SL, Longo DL, Jameson JL (eds) (2008) Harrison’s principles of internal medicine, 17th edn. Mc Graw-Hill Medical publishers, New York

    Google Scholar 

  28. Huang D, Chang TR, Aggarwal A, Lee RC, Ehrlich HP (1993) Mechanisms and dynamics of mechanical strengthening in ligament-equivalent fibroblast-populated collagen matrices. Ann Biomed Eng 21:289–305

    Article  CAS  Google Scholar 

  29. Humes HD, Buffington DA, Mackay SM, Funke AJ, Weitzel WF (1999) Replacement of renal function in uremic animals with a tissue-engineered kidney. Nat Biotechnol 17:451–455

    Article  CAS  Google Scholar 

  30. Huynh T, Abraham G, Murray J, Brockbank K, Hagen PO, Sullivan S (1999) Remodeling of an acellular collagen graft into a physiologically responsive neovessel. Nat Biotechnol 17:1083–1086

    Article  CAS  Google Scholar 

  31. Isogai N, Landis W, Kim TH, Gerstenfeld LC, Upton J, Vacanti J (1999) Formation of phalanges and small joints by tissue-engineering. J Bone Joint Surg 81A:306–316

    Article  Google Scholar 

  32. Kronenthal RL (1975) Biodegradable polymers in medicine and surgery. Polymer Sci Technol 8:119–137

    CAS  Google Scholar 

  33. Lanza R, Chick WL (1997) Bioartificial organs: science, medicine, and technology. Ann N Y Acad Sci 831:323–331

    Article  CAS  Google Scholar 

  34. Lavik E, Langer R (2004) Tissue engineering: current state and perspectives. Appl Microbiol Biotechnol 65:1

    Article  CAS  Google Scholar 

  35. Lee et al (2011) Growth factor delivery-based tissue engineering: general approaches and a review of recent developments. J R Soc Interface 8:153–170

    Article  CAS  Google Scholar 

  36. Matsushima S, Isogai N, Jacquet R, Lowder E, Tokui T, Landis WJ (2011) The nature and role of periosteum in bone and cartilage regeneration. Cells Tissues Organs 194:320–325

    Article  CAS  Google Scholar 

  37. Niklason LE, Gao J, Abbott WM, Hirschi KK, Houser S, Marini R, Langer R (1999) Functional arteries grown in vitro. Science 284:489–493

    Article  CAS  Google Scholar 

  38. Nishi K, Mano C, Ichihara M, Honda T (1998) The inhibition of lens epithelial cell migration by a discontinuous capsular bend created by a band-shaped circular loop or a capsule-bending ring. Ophthalmic Surg Lasers 29:119–125

    CAS  Google Scholar 

  39. Oberpenning F, Meng J, Yoo JJ, Atala A (1999) De novo reconstitution of a functional mammalian urinary bladder by tissue engineering. Nat Biotechnol 17:149–155

    Article  CAS  Google Scholar 

  40. Peters MC, Isenberg BC, Rowley JA, Mooney DJ (1998) Release from alginate enhances the biological activity of vascular endothelial growth factor. Biomater Sci Polym Ed 9:1267–1278

    Article  CAS  Google Scholar 

  41. Schreiber RE et al (1999) Repair of osteochondral defects with allogeneic tissue engineered cartilage implants. Clin Orthop 367S:382–395

    Article  Google Scholar 

  42. Shea LD, Smiley E, Bonadio J, Mooney DJ (1999) DNA delivery from polymer matrices for tissue engineering. Nat Biotechnol 17:551–554

    Article  CAS  Google Scholar 

  43. Sheih SJ, Vacanti JP (2005) State-of-the-art tissue engineering: from tissue engineering to organ building. Surgery 137:1

    Article  Google Scholar 

  44. Skalak R, Fox CF (1988) Tissue engineering. Liss, New York, pp 26–29, Granlibakken, Lake Tahoe: Proc workshop

    Google Scholar 

  45. Stading M, Langer R (1999) Mechanical shear properties of cell-polymer cartilage constructs. Tissue Eng 5:241–250

    Article  CAS  Google Scholar 

  46. Xu XM, Zhang SX, Li H, Aebischer P, Bunge MB (1999) Regrowth of axons into the distal spinal cord through a Schwann-cell-seeded mini-channel implanted into hemisected adult rat spinal cord. Eur J Neurosci 11:1723–1740

    Article  CAS  Google Scholar 

Some Related Resources

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Gupta, V., Sengupta, M., Prakash, J., Tripathy, B.C. (2017). Tissue Engineering and Artificial Organ. In: Basic and Applied Aspects of Biotechnology. Springer, Singapore. https://doi.org/10.1007/978-981-10-0875-7_21

Download citation

Publish with us

Policies and ethics