Skip to main content

Genetic Predisposition to COPD: Are There Any Relevant Genes Determining the Susceptibility to Smoking?

  • Chapter
  • First Online:
Chronic Obstructive Pulmonary Disease

Abstract

Chronic obstructive pulmonary disease (COPD) is a complex disease with both genetic and environmental determinants, and case–control association studies on candidate genes and also genomic approaches such as genome-wide association studies (GWASs) have been used to discover genes involved in COPD pathogenesis. Though the 15q25 locus which encodes a family of nicotinic cholinergic receptors including CHRNA3 and CHRNA5 and also the other novel loci were reported to be associated with COPD susceptibility, it is uncertain through which molecular pathways the genetic variants of these genes affect the pathogenesis in a concrete manner and whether the genetic effects are on susceptibility to smoking behavior and/or to lung destruction as emphysematous change of the lungs induced by smoking. Recent studies showed the functional genetic variations related to COPD pathogenesis by using two different types of omics data, such as GWAS and gene expression profiling in the lungs. A recent study with more than 50,000 individuals of European ancestry in the United Kingdom investigated the genes associated with COPD and reported the genes related to nicotine addiction, impaired lung development, and accelerated lung function decline, respectively. The genetic variations associated with COPD exacerbations and the ethnic difference of COPD pathogenesis also should be elucidated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Snider GL. Chronic obstructive pulmonary disease: risk factors, pathophysiology and pathogenesis. Annu Rev Med. 1989;40:411–29.

    Article  CAS  PubMed  Google Scholar 

  2. Silverman EK, Chapman HA, Drazen JM, Weiss ST, Rosner B, Campbell EJ, et al. Genetic epidemiology of severe, early-onset chronic obstructive pulmonary disease. Risk to relatives for airflow obstruction and chronic bronchitis. Am J Respir Crit Care Med. 1998;157(6 Pt 1):1770–8.

    Article  CAS  PubMed  Google Scholar 

  3. Khoury MJ, Beaty TH, Tockman MS, Self SG, Cohen BH. Familial aggregation in chronic obstructive pulmonary disease: use of the loglinear model to analyze intermediate environmental and genetic risk factors. Genet Epidemiol. 1985;2(2):155–66.

    Article  CAS  PubMed  Google Scholar 

  4. McCloskey SC, Patel BD, Hinchliffe SJ, Reid ED, Wareham NJ, Lomas DA. Siblings of patients with severe chronic obstructive pulmonary disease have a significant risk of airflow obstruction. Am J Respir Crit Care Med. 2001;164(8 Pt 1):1419–24.

    Article  CAS  PubMed  Google Scholar 

  5. Silverman EK, Sandhaus RA. Clinical practice. Alpha1-antitrypsin deficiency. N Engl J Med. 2009;360(26):2749–57.

    Article  CAS  PubMed  Google Scholar 

  6. Halapi E, Hakonarson H. 1. Introduction to genetics. In: Postma DS, Weiss ST, editors. Genetics of asthma and chronic obstructive pulmonary disease. New York: Informa Healthcare; 2006. p. 1–16.

    Google Scholar 

  7. Molfino NA. Genetic predisposition to accelerated decline of lung function in COPD. Int J Chron Obstruct Pulmon Dis. 2007;2(2):117–9.

    PubMed  PubMed Central  Google Scholar 

  8. Demeo DL, HC, Silverman EK. 11. Linkage analysis of spirometric phenotypes and chronic obstructive pulmonary disease. In: Postma DS, Weiss ST, editors. Genetics of asthma and chronic obstructive pulmonary disease. New York: Informa Healthcare; 2006. p. 211–22.

    Google Scholar 

  9. Silverman EK, Palmer LJ, Mosley JD, Barth M, Senter JM, Brown A, et al. Genomewide linkage analysis of quantitative spirometric phenotypes in severe early-onset chronic obstructive pulmonary disease. Am J Hum Genet. 2002;70(5):1229–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Silverman EK, Mosley JD, Palmer LJ, Barth M, Senter JM, Brown A, et al. Genome-wide linkage analysis of severe, early-onset chronic obstructive pulmonary disease: airflow obstruction and chronic bronchitis phenotypes. Hum Mol Genet. 2002;11(6):623–32.

    Article  CAS  PubMed  Google Scholar 

  11. Joost O, Wilk JB, Cupples LA, Harmon M, Shearman AM, Baldwin CT, et al. Genetic loci influencing lung function: a genome-wide scan in the Framingham Study. Am J Respir Crit Care Med. 2002;165(6):795–9.

    Article  PubMed  Google Scholar 

  12. Malhotra A, Peiffer AP, Ryujin DT, Elsner T, Kanner RE, Leppert MF, et al. Further evidence for the role of genes on chromosome 2 and chromosome 5 in the inheritance of pulmonary function. Am J Respir Crit Care Med. 2003;168(5):556–61.

    Article  PubMed  Google Scholar 

  13. Wilk JB, DeStefano AL, Arnett DK, Rich SS, Djousse L, Crapo RO, et al. A genome-wide scan of pulmonary function measures in the National Heart, Lung, and Blood Institute Family Heart Study. Am J Respir Crit Care Med. 2003;167(11):1528–33.

    Article  PubMed  Google Scholar 

  14. Demeo DL, Mariani TJ, Lange C, Srisuma S, Litonjua AA, Celedon JC, et al. The SERPINE2 gene is associated with chronic obstructive pulmonary disease. Am J Hum Genet. 2006;78(2):253–64.

    Article  CAS  PubMed  Google Scholar 

  15. Zhu G, Warren L, Aponte J, Gulsvik A, Bakke P, Anderson WH, et al. The SERPINE2 gene is associated with chronic obstructive pulmonary disease in two large populations. Am J Respir Crit Care Med. 2007;176(2):167–73.

    Article  CAS  PubMed  Google Scholar 

  16. Fujimoto K, Ikeda S, Arai T, Tanaka N, Kumasaka T, Ishii T, et al. Polymorphism of SERPINE2 gene is associated with pulmonary emphysema in consecutive autopsy cases. BMC Med Genet. 2010;11:159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Celedon JC, Lange C, Raby BA, Litonjua AA, Palmer LJ, DeMeo DL, et al. The transforming growth factor-beta1 (TGFB1) gene is associated with chronic obstructive pulmonary disease (COPD). Hum Mol Genet. 2004;13(15):1649–56.

    Article  CAS  PubMed  Google Scholar 

  18. Ito M, Hanaoka M, Droma Y, Hatayama O, Sato E, Katsuyama Y, et al. The association of transforming growth factor beta 1 gene polymorphisms with the emphysema phenotype of COPD in Japanese. Intern Med. 2008;47(15):1387–94.

    Article  PubMed  Google Scholar 

  19. Kim WJ, Hoffman E, Reilly J, Hersh C, Demeo D, Washko G, et al. Association of COPD candidate genes with computed tomography emphysema and airway phenotypes in severe COPD. Eur Respir J. 2011;37(1):39–43.

    Article  CAS  PubMed  Google Scholar 

  20. Kukkonen MK, Tiili E, Vehmas T, Oksa P, Piirila P, Hirvonen A. Association of genes of protease-antiprotease balance pathway to lung function and emphysema subtypes. BMC Pulm Med. 2013;13:36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wu L, Chau J, Young RP, Pokorny V, Mills GD, Hopkins R, et al. Transforming growth factor-beta1 genotype and susceptibility to chronic obstructive pulmonary disease. Thorax. 2004;59(2):126–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Su ZG, Wen FQ, Feng YL, Xiao M, Wu XL. Transforming growth factor-beta1 gene polymorphisms associated with chronic obstructive pulmonary disease in Chinese population. Acta Pharmacol Sin. 2005;26(6):714–20.

    CAS  PubMed  Google Scholar 

  23. Morris DG, Huang X, Kaminski N, Wang Y, Shapiro SD, Dolganov G, et al. Loss of integrin alpha(v)beta6-mediated TGF-beta activation causes Mmp12-dependent emphysema. Nature. 2003;422(6928):169–73.

    Article  CAS  PubMed  Google Scholar 

  24. Reich DE, Lander ES. On the allelic spectrum of human disease. Trends Genet. 2001;17(9):502–10.

    Article  CAS  PubMed  Google Scholar 

  25. Schork NJ, Murray SS, Frazer KA, Topol EJ. Common vs. rare allele hypotheses for complex diseases. Curr Opin Genet Dev. 2009;19(3):212–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hoidal JR. Genetics of COPD: present and future. Eur Respir J. 2001;18(5):741–3.

    Article  CAS  PubMed  Google Scholar 

  27. Hunninghake GM, Cho MH, Tesfaigzi Y, Soto-Quiros ME, Avila L, Lasky-Su J, et al. MMP12, lung function, and COPD in high-risk populations. N Engl J Med. 2009;361(27):2599–608.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cho MH, McDonald ML, Zhou X, Mattheisen M, Castaldi PJ, Hersh CP, et al. Risk loci for chronic obstructive pulmonary disease: a genome-wide association study and meta-analysis. Lancet Respir Med. 2014;2(3):214–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ishii T, Hagiwara K, Kamio K, Ikeda S, Arai T, Mieno MN, et al. Involvement of surfactant protein D in emphysema revealed by genetic association study. Eur J Hum Genet. 2012;20(2):230–5.

    Article  CAS  PubMed  Google Scholar 

  30. Hartl D, Griese M. Surfactant protein D in human lung diseases. Eur J Clin Invest. 2006;36(6):423–35.

    Article  CAS  PubMed  Google Scholar 

  31. Bridges JP, Davis HW, Damodarasamy M, Kuroki Y, Howles G, Hui DY, et al. Pulmonary surfactant proteins A and D are potent endogenous inhibitors of lipid peroxidation and oxidative cellular injury. J Biol Chem. 2000;275(49):38848–55.

    Article  CAS  PubMed  Google Scholar 

  32. Yoshida T, Tuder RM. Pathobiology of cigarette smoke-induced chronic obstructive pulmonary disease. Physiol Rev. 2007;87(3):1047–82.

    Article  CAS  PubMed  Google Scholar 

  33. McCormack FX, Whitsett JA. The pulmonary collectins, SP-A and SP-D, orchestrate innate immunity in the lung. J Clin Invest. 2002;109(6):707–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wert SE, Yoshida M, LeVine AM, Ikegami M, Jones T, Ross GF, et al. Increased metalloproteinase activity, oxidant production, and emphysema in surfactant protein D gene-inactivated mice. Proc Natl Acad Sci U S A. 2000;97(11):5972–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sorensen GL, Hjelmborg J, Kyvik KO, Fenger M, Hoj A, Bendixen C, et al. Genetic and environmental influences of surfactant protein D serum levels. Am J Physiol Lung Cell Mol Physiol. 2006;290(5):L1010–7.

    Article  PubMed  CAS  Google Scholar 

  36. Leth-Larsen R, Garred P, Jensenius H, Meschi J, Hartshorn K, Madsen J, et al. A common polymorphism in the SFTPD gene influences assembly, function, and concentration of surfactant protein D. J Immunol. 2005;174(3):1532–8.

    Article  CAS  PubMed  Google Scholar 

  37. Foreman MG, Kong X, DeMeo DL, Pillai SG, Hersh CP, Bakke P, et al. Polymorphisms in surfactant protein-D are associated with chronic obstructive pulmonary disease. Am J Respir Cell Mol Biol. 2011;44(3):316–22.

    Article  CAS  PubMed  Google Scholar 

  38. Bosse Y. Updates on the COPD gene list. Int J Chron Obstruct Pulmon Dis. 2012;7:607–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ishii T, Sandford AJ. 14. Association studies in chronic obstructive pulmonary disease. In: Postma DS, Weiss ST, editors. Genetics of asthma and chronic obstructive pulmonary disease. New York: Informa Healthcare; 2006. p. 273–97.

    Google Scholar 

  40. Castaldi PJ, Cho MH, Cohn M, Langerman F, Moran S, Tarragona N, et al. The COPD genetic association compendium: a comprehensive online database of COPD genetic associations. Hum Mol Genet. 2010;19(3):526–34.

    Article  CAS  PubMed  Google Scholar 

  41. Hu G, Yao W, Zhou Y, Hu J, Shi Z, Li B, et al. Meta- and pooled analyses of the effect of glutathione S-transferase M1 and T1 deficiency on chronic obstructive pulmonary disease. Int J Tuberc Lung Dis. 2008;12(12):1474–81.

    CAS  PubMed  Google Scholar 

  42. Smolonska J, Wijmenga C, Postma DS, Boezen HM. Meta-analyses on suspected chronic obstructive pulmonary disease genes: a summary of 20 years’ research. Am J Respir Crit Care Med. 2009;180(7):618–31.

    Article  CAS  PubMed  Google Scholar 

  43. A haplotype map of the human genome. Nature. 2005;437(7063):1299–320.

    Google Scholar 

  44. Pillai SG, Ge D, Zhu G, Kong X, Shianna KV, Need AC, et al. A genome-wide association study in chronic obstructive pulmonary disease (COPD): identification of two major susceptibility loci. PLoS Genet. 2009;5(3), e1000421.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Wilk JB, Chen TH, Gottlieb DJ, Walter RE, Nagle MW, Brandler BJ, et al. A genome-wide association study of pulmonary function measures in the Framingham Heart Study. PLoS Genet. 2009;5(3), e1000429.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Cho MH, Boutaoui N, Klanderman BJ, Sylvia JS, Ziniti JP, Hersh CP, et al. Variants in FAM13A are associated with chronic obstructive pulmonary disease. Nat Genet. 2010;42(3):200–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Auton A, Brooks LD, Durbin RM, Garrison EP, Kang HM, Korbel JO, et al. A global reference for human genetic variation. Nature. 2015;526(7571):68–74.

    Article  PubMed  CAS  Google Scholar 

  48. Cho MH, Castaldi PJ, Wan ES, Siedlinski M, Hersh CP, Demeo DL, et al. A genome-wide association study of COPD identifies a susceptibility locus on chromosome 19q13. Hum Mol Genet. 2012;21(4):947–57.

    Article  CAS  PubMed  Google Scholar 

  49. Thorgeirsson TE, Gudbjartsson DF, Surakka I, Vink JM, Amin N, Geller F, et al. Sequence variants at CHRNB3-CHRNA6 and CYP2A6 affect smoking behavior. Nat Genet. 2010;42(5):448–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Tobacco and Genetics Consortium. Genome-wide meta-analyses identify multiple loci associated with smoking behavior. Nat Genet. 2010;42(5):441–7.

    Article  CAS  Google Scholar 

  51. Wilk JB, Shrine NR, Loehr LR, Zhao JH, Manichaikul A, Lopez LM, et al. Genome-wide association studies identify CHRNA5/3 and HTR4 in the development of airflow obstruction. Am J Respir Crit Care Med. 2012;186(7):622–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hancock DB, Eijgelsheim M, Wilk JB, Gharib SA, Loehr LR, Marciante KD, et al. Meta-analyses of genome-wide association studies identify multiple loci associated with pulmonary function. Nat Genet. 2010;42(1):45–52.

    Article  CAS  PubMed  Google Scholar 

  53. Repapi E, Sayers I, Wain LV, Burton PR, Johnson T, Obeidat M, et al. Genome-wide association study identifies five loci associated with lung function. Nat Genet. 2010;42(1):36–44.

    Article  CAS  PubMed  Google Scholar 

  54. Hobbs BD, Hersh CP. Integrative genomics of chronic obstructive pulmonary disease. Biochem Biophys Res Commun. 2014;452(2):276–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Silverman EK, Loscalzo J. Network medicine approaches to the genetics of complex diseases. Discov Med. 2012;14(75):143–52.

    PubMed  PubMed Central  Google Scholar 

  56. Kim WJ, Lee SD. Candidate genes for COPD: current evidence and research. Int J Chron Obstruct Pulmon Dis. 2015;10:2249–55.

    PubMed  PubMed Central  Google Scholar 

  57. Thorgeirsson TE, Geller F, Sulem P, Rafnar T, Wiste A, Magnusson KP, et al. A variant associated with nicotine dependence, lung cancer and peripheral arterial disease. Nature. 2008;452(7187):638–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Amos CI, Spitz MR, Cinciripini P. Chipping away at the genetics of smoking behavior. Nat Genet. 2010;42(5):366–8.

    Article  CAS  PubMed  Google Scholar 

  59. Fowler CD, Lu Q, Johnson PM, Marks MJ, Kenny PJ. Habenular alpha5 nicotinic receptor subunit signalling controls nicotine intake. Nature. 2011;471(7340):597–601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Lutz SM, Hokanson JE. Genetic influences on smoking and clinical disease. Understanding behavioral and biological pathways with mediation analysis. Ann Am Thorac Soc. 2014;11(7):1082–3.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Castaldi PJ, Cho MH, Zhou X, Qiu W, McGeachie M, Celli B, et al. Genetic control of gene expression at novel and established chronic obstructive pulmonary disease loci. Hum Mol Genet. 2015;24(4):1200–10.

    Article  CAS  PubMed  Google Scholar 

  62. LaVaute T, Smith S, Cooperman S, Iwai K, Land W, Meyron-Holtz E, et al. Targeted deletion of the gene encoding iron regulatory protein-2 causes misregulation of iron metabolism and neurodegenerative disease in mice. Nat Genet. 2001;27(2):209–14.

    Article  CAS  PubMed  Google Scholar 

  63. Lamontagne M, Couture C, Postma DS, Timens W, Sin DD, Pare PD, et al. Refining susceptibility loci of chronic obstructive pulmonary disease with lung eQTLs. PLoS One. 2013;8(7), e70220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Zhou X, Qiu W, Sathirapongsasuti JF, Cho MH, Mancini JD, Lao T, et al. Gene expression analysis uncovers novel hedgehog interacting protein (HHIP) effects in human bronchial epithelial cells. Genomics. 2013;101(5):263–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Lao T, Glass K, Qiu W, Polverino F, Gupta K, Morrow J, et al. Haploinsufficiency of Hedgehog interacting protein causes increased emphysema induced by cigarette smoke through network rewiring. Genome Med. 2015;7(1):12.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Jin Z, Chung JW, Mei W, Strack S, He C, Lau GW, et al. Regulation of nuclear-cytoplasmic shuttling and function of Family with sequence similarity 13, member A (Fam13a), by B56-containing PP2As and Akt. Mol Biol Cell. 2015;26(6):1160–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Li X, Hawkins GA, Ampleford EJ, Moore WC, Li H, Hastie AT, et al. Genome-wide association study identifies TH1 pathway genes associated with lung function in asthmatic patients. J Allergy Clin Immunol. 2013;132(2):313–20 e15.

    Google Scholar 

  68. Lee JH, Cho MH, Hersh CP, McDonald ML, Crapo JD, Bakke PS, et al. Genetic susceptibility for chronic bronchitis in chronic obstructive pulmonary disease. Respir Res. 2014;15:113.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Fingerlin TE, Murphy E, Zhang W, Peljto AL, Brown KK, Steele MP, et al. Genome-wide association study identifies multiple susceptibility loci for pulmonary fibrosis. Nat Genet. 2013;45(6):613–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Siedlinski M, Tingley D, Lipman PJ, Cho MH, Litonjua AA, Sparrow D, et al. Dissecting direct and indirect genetic effects on chronic obstructive pulmonary disease (COPD) susceptibility. Hum Genet. 2013;132(4):431–41.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Wain LV, Shrine N, Miller S, Jackson VE, Ntalla I, Artigas MS, et al. Novel insights into the genetics of smoking behaviour, lung function, and chronic obstructive pulmonary disease (UK BiLEVE): a genetic association study in UK Biobank. Lancet Respir Med. 2015;25.

    Google Scholar 

  72. Brusselle GG, Bracke KR. Elucidating COPD pathogenesis by large-scale genetic analyses. Lancet Respir Med. 2015;3(10):737–9.

    Article  PubMed  Google Scholar 

  73. Burrows B. An overview of obstructive lung diseases. Med Clin North Am. 1981;65(3):455–71.

    Article  CAS  PubMed  Google Scholar 

  74. Lange P, Celli B, Agusti A, Boje Jensen G, Divo M, Faner R, et al. Lung-function trajectories leading to chronic obstructive pulmonary disease. N Engl J Med. 2015;373(2):111–22.

    Article  CAS  PubMed  Google Scholar 

  75. Sandford AJ, Chagani T, Weir TD, Connett JE, Anthonisen NR, Pare PD. Susceptibility genes for rapid decline of lung function in the lung health study. Am J Respir Crit Care Med. 2001;163(2):469–73.

    Article  CAS  PubMed  Google Scholar 

  76. Hansel NN, Ruczinski I, Rafaels N, Sin DD, Daley D, Malinina A, et al. Genome-wide study identifies two loci associated with lung function decline in mild to moderate COPD. Hum Genet. 2013;132(1):79–90.

    Article  PubMed  Google Scholar 

  77. Soler Artigas M, Loth DW, Wain LV, Gharib SA, Obeidat M, Tang W, et al. Genome-wide association and large-scale follow up identifies 16 new loci influencing lung function. Nat Genet. 2011;43(11):1082–90.

    Article  PubMed  CAS  Google Scholar 

  78. Patel BD, Coxson HO, Pillai SG, Agusti AG, Calverley PM, Donner CF, et al. Airway wall thickening and emphysema show independent familial aggregation in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2008;178(5):500–5.

    Article  PubMed  Google Scholar 

  79. Kong X, Cho MH, Anderson W, Coxson HO, Muller N, Washko G, et al. Genome-wide association study identifies BICD1 as a susceptibility gene for emphysema. Am J Respir Crit Care Med. 2011;183(1):43–9.

    Article  CAS  PubMed  Google Scholar 

  80. Manichaikul A, Hoffman EA, Smolonska J, Gao W, Cho MH, Baumhauer H, et al. Genome-wide study of percent emphysema on computed tomography in the general population. The Multi-Ethnic Study of Atherosclerosis Lung/SNP Health Association Resource Study. Am J Respir Crit Care Med. 2014;189(4):408–18.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Cho MH, Castaldi PJ, Hersh CP, Hobbs BD, Barr RG, Tal-Singer R, et al. A genome-wide association study of emphysema and airway quantitative imaging phenotypes. Am J Respir Crit Care Med. 2015;192(5):559–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Corvol H, Hodges CA, Drumm ML, Guillot L. Moving beyond genetics: is FAM13A a major biological contributor in lung physiology and chronic lung diseases? J Med Genet. 2014;51(10):646–9.

    Article  CAS  PubMed  Google Scholar 

  83. Hurst JR, Vestbo J, Anzueto A, Locantore N, Mullerova H, Tal-Singer R, et al. Susceptibility to exacerbation in chronic obstructive pulmonary disease. N Engl J Med. 2010;363(12):1128–38.

    Article  CAS  PubMed  Google Scholar 

  84. Ishii T, Kida K. Predictors of chronic obstructive pulmonary disease exacerbations. Curr Opin Pulm Med. 2014;20(2):138–45.

    Article  PubMed  Google Scholar 

  85. Fletcher CM. Causes and development of chronic airways obstruction and its further investigation. Bull Physiopathol Respir (Nancy). 1973;9(4):1131–48.

    CAS  Google Scholar 

  86. Foreman MG, DeMeo DL, Hersh CP, Carey VJ, Fan VS, Reilly JJ, et al. Polymorphic variation in surfactant protein B is associated with COPD exacerbations. Eur Respir J. 2008;32(4):938–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Lin CL, Siu LK, Lin JC, Liu CY, Chian CF, Lee CN, et al. Mannose-binding lectin gene polymorphism contributes to recurrence of infective exacerbation in patients with COPD. Chest. 2011;139(1):43–51.

    Article  CAS  PubMed  Google Scholar 

  88. Takabatake N, Shibata Y, Abe S, Wada T, Machiya J, Igarashi A, et al. A single nucleotide polymorphism in the CCL1 gene predicts acute exacerbations in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2006;174(8):875–85.

    Article  CAS  PubMed  Google Scholar 

  89. Angata T, Ishii T, Motegi T, Oka R, Taylor RE, Soto PC, et al. Loss of Siglec-14 reduces the risk of chronic obstructive pulmonary disease exacerbation. Cell Mol Life Sci. 2013;70(17):3199–210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Divo M, Cote C, de Torres JP, Casanova C, Marin JM, Pinto-Plata V, et al. Comorbidities and risk of mortality in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2012;186(2):155–61.

    Article  PubMed  Google Scholar 

  91. Vanfleteren LE, Spruit MA, Groenen M, Gaffron S, van Empel VP, Bruijnzeel PL, et al. Clusters of comorbidities based on validated objective measurements and systemic inflammation in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2013;187(7):728–35.

    Article  PubMed  Google Scholar 

  92. Hardin M, Cho M, McDonald ML, Beaty T, Ramsdell J, Bhatt S, et al. The clinical and genetic features of COPD-asthma overlap syndrome. Eur Respir J. 2014;44(2):341–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Stranger BE, Nica AC, Forrest MS, Dimas A, Bird CP, Beazley C, et al. Population genomics of human gene expression. Nat Genet. 2007;39(10):1217–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Qiu W, Cho MH, Riley JH, Anderson WH, Singh D, Bakke P, et al. Genetics of sputum gene expression in chronic obstructive pulmonary disease. PLoS One. 2011;6(9), e24395.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Obeidat M, Hao K, Bosse Y, Nickle DC, Nie Y, Postma DS, et al. Molecular mechanisms underlying variations in lung function: a systems genetics analysis. Lancet Respir Med. 2015;21.

    Google Scholar 

  96. Yoo S, Takikawa S, Geraghty P, Argmann C, Campbell J, Lin L, et al. Integrative analysis of DNA methylation and gene expression data identifies EPAS1 as a key regulator of COPD. PLoS Genet. 2015;11(1), e1004898.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Brehm JM, Hagiwara K, Tesfaigzi Y, Bruse S, Mariani TJ, Bhattacharya S, et al. Identification of FGF7 as a novel susceptibility locus for chronic obstructive pulmonary disease. Thorax. 2011;66(12):1085–90.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Abecasis GR, Altshuler D, Auton A, Brooks LD, Durbin RM, Gibbs RA, et al. A map of human genome variation from population-scale sequencing. Nature. 2010;467(7319):1061–73.

    Article  PubMed  CAS  Google Scholar 

  99. Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA, Hunter DJ, et al. Finding the missing heritability of complex diseases. Nature. 2009;461(7265):747–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Hobbs BD, Parker MM, Chen H, Lao T, Hardin M, Qiao D, et al. Exome array analysis identifies a common variant in IL27 associated with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2016;15.

    Google Scholar 

  101. Angata T, Ishii T, Gao C, Ohtsubo K, Kitazume S, Gemma A, et al. Association of serum interleukin-27 with the exacerbation of chronic obstructive pulmonary disease. Physiol Rep. 2014;2(7).

    Google Scholar 

  102. Qiao D, Lange C, Beaty TH, Crapo JD, Barnes KC, Bamshad M, et al. Exome sequencing analysis in severe, early-onset chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2016;193(12):1353–63.

    Article  PubMed  Google Scholar 

  103. Wood AR, Esko T, Yang J, Vedantam S, Pers TH, Gustafsson S, et al. Defining the role of common variation in the genomic and biological architecture of adult human height. Nat Genet. 2014;46(11):1173–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Begum F, Ruczinski I, Li S, Silverman EK, Cho MH, Lynch DA, et al. Identifying a deletion affecting total lung capacity among subjects in the COPDGene study cohort. Genet Epidemiol. 2016;40(1):81–8.

    Article  PubMed  Google Scholar 

  105. Hersh CP. Pharmacogenetics of chronic obstructive pulmonary disease: challenges and opportunities. Pharmacogenomics. 2010;11(2):237–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Lamb J, Crawford ED, Peck D, Modell JW, Blat IC, Wrobel MJ, et al. The Connectivity Map: using gene-expression signatures to connect small molecules, genes, and disease. Science. 2006;313(5795):1929–35.

    Article  CAS  PubMed  Google Scholar 

  107. Sudmant PH, Rausch T, Gardner EJ, Handsaker RE, Abyzov A, Huddleston J, et al. An integrated map of structural variation in 2,504 human genomes. Nature. 2015;526(7571):75–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Ishii T, Abboud RT, Wallace AM, English JC, Coxson HO, Finley RJ, et al. Alveolar macrophage proteinase/antiproteinase expression in lung function and emphysema. Eur Respir J. 2014;43(1):82–91.

    Article  PubMed  Google Scholar 

  109. Lamontagne M, Timens W, Hao K, Bosse Y, Laviolette M, Steiling K, et al. Genetic regulation of gene expression in the lung identifies CST3 and CD22 as potential causal genes for airflow obstruction. Thorax. 2014;69(11):997–1004.

    Article  PubMed  Google Scholar 

  110. Kaiser J. Who has your DNA–or wants it. Science. 2015;349(6255):1475.

    Article  PubMed  Google Scholar 

  111. Couper D, LaVange LM, Han M, Barr RG, Bleecker E, Hoffman EA, et al. Design of the Subpopulations and Intermediate Outcomes in COPD Study (SPIROMICS). Thorax. 2014;69(5):491–4.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takeo Ishii M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Ishii, T., Hagiwara, K. (2017). Genetic Predisposition to COPD: Are There Any Relevant Genes Determining the Susceptibility to Smoking?. In: Nakamura, H., Aoshiba, K. (eds) Chronic Obstructive Pulmonary Disease. Respiratory Disease Series: Diagnostic Tools and Disease Managements. Springer, Singapore. https://doi.org/10.1007/978-981-10-0839-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-0839-9_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-0838-2

  • Online ISBN: 978-981-10-0839-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics