Advertisement

Robot Teleoperation Technologies

  • Chenguang YangEmail author
  • Hongbin MaEmail author
  • Mengyin Fu
Chapter

Abstract

This chapter gives an introduction of robot teleoperation and detailed analysis for up-to-date robot teleoperation technologies. The teleoperation based on body motion tracking is first introduced, using a Kinect sensor to control a robot with both vector approach and inverse kinematics approach. Fuzzy inference based adaptive control is then employed in teleoperation, such that the telerobot is able to adapt similarly as the practical case that our humans are able to adapt to other collaborators in a cooperative task. Next, the haptic interaction is implemented using a 3D joystick connected with a virtual robot created by the iCub Simulator, which works with YARP interface and simulates the real iCub robot. Finally, a teleoperation using position-position command strategy is employed to control a slave robot arm to move according to the action of the master side. A simple yet effective haptic rendering algorithm is designed for haptic feedback interaction.

Keywords

Inverse Kinematic Haptic Feedback Haptic Device Kinect Sensor Haptic Interaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Krebs, H.I., Hogan, N., Aisen, M.L., Volpe, B.T.: Robot-aided neurorehabilitation. IEEE Trans. Rehabil. Eng. 6(1), 75–87 (1998)CrossRefGoogle Scholar
  2. 2.
    P. Renon, C. Yang, H. Ma, and M. Fu, “Haptic interaction between human and virtual robot with chai3d and icub simulator,” in Proceedings of the 32nd Chinese Control Conference (CCC2013), (Xi’an), CCC, 2013Google Scholar
  3. 3.
    Burdea, G.C., Burdea, C., Burdea, C.: Force and Touch Feedback for Virtual Reality. Wiley, New York (1996)Google Scholar
  4. 4.
    Shimoga, K.B.: A survey of perceptual feedback issues in dexterous telemanipulation. II. Finger touch feedback. In: Virtual Reality Annual International Symposium, 1993, IEEE, pp. 271–279. IEEE (1993)Google Scholar
  5. 5.
    Stone, R.J.: Haptic feedback: A brief history from telepresence to virtual reality. Haptic Human-Computer Interaction, pp. 1–16. Springer, Berlin (2001)Google Scholar
  6. 6.
    Guo, S., Song, G., Song, Z.: Development of a self-assisted rehabilitation system for the upper limbs based on virtual reality. IEEE International Conference on Mechatronics (2007)Google Scholar
  7. 7.
    Wang, H., Liu, X.P.: Design of a novel mobile assistive robot with haptic interaction. In: IEEE International Conference on Virtual Environments Human-Computer Interfaces and Measurement Systems (VECIMS), pp. 115–120. IEEE (2012)Google Scholar
  8. 8.
    Li, C., Ma, H., Yang, C., Fu, M.: Teleoperation of a virtual icub robot under framework of parallel system via hand gesture recognition. In: IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), pp. 1469–1474. IEEE (2014)Google Scholar
  9. 9.
    Inoue, K., Tanikawa, T., Arai, T.: Micro hand with two rotational fingers and manipulation of small objects by teleoperation. In: MHS 2008. International Symposium on Micro-NanoMechatronics and Human Science, pp. 97–102. IEEE (2008)Google Scholar
  10. 10.
    Reddivari, H., Yang, C., Ju, Z., Liang, P., Li, Z., Xu, B.: Teleoperation control of baxter robot using body motion tracking. In: 2014 International Conference on Multisensor Fusion and Information Integration for Intelligent Systems (MFI), pp. 1–6. IEEE (2014)Google Scholar
  11. 11.
    Machida, E., Cao, M., Murao, T., Hashi, H.: Human motion tracking of mobile robot with kinect 3d sensor. In: 2012 Proceedings of SICE Annual Conference (SICE), pp. 2207–2211. IEEE (2012)Google Scholar
  12. 12.
  13. 13.
  14. 14.
    Xu, Z., Yang, C., Ma, H., Fu, M.: Fuzzy-based adaptive motion control of a virtual iCub robot in human-robot-interaction. In: 2014 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), pp. 1463–1468. IEEE (2014)Google Scholar
  15. 15.
    Smith, A., Yang, C., Ma, H., Culverhouse, P., Cangelosi, A., Burdet, E.: Bimanual robotic manipulation with biomimetic joint/task space hybrid adaptation of force and impedance. In: The Proceedings of the 11th IEEE International Conference on Control and Automation to be held in Taichung, Taiwan, June, pp. 18–20 (2014)Google Scholar
  16. 16.
    Consortium, T.R.: http://www.icub.org
  17. 17.
    Bing, X.H., Qing, Y.Y.: Jacobi velocity matrix of arbitrary point in the robot mechanism and its automatic generation. J. Mach. Des. 24(8), 20–25 (2007)Google Scholar
  18. 18.
    Santibañez, V., Kelly, R.: PD control with feedforward compensation for robot manipulators: analysis and experimentation. Robotica 19(01), 11–19 (2001)CrossRefGoogle Scholar
  19. 19.
    Xinmin, S., Zhengqing, H.: Fuzzy control and matlab simulation (2008)Google Scholar
  20. 20.
    Tavakoli, M., Patel, R., Moallem, M.: Haptic interaction in robot-assisted endoscopic surgery: a sensorized end-effector. Int. J. Med. Robot. Comput. Assist. Surg. 1(2), 53–63 (2005)CrossRefGoogle Scholar
  21. 21.
    Wang, D., Li, J., Li, C.: An adaptive haptic interaction architecture for knee rehabilitation robot,. In: International Conference on Mechatronics and Automation, 2009. ICMA 2009, pp. 84–89. IEEE (2009)Google Scholar
  22. 22.
    Gupta, A., O’Malley, M.K.: Design of a haptic arm exoskeleton for training and rehabilitation. IEEE/ASME Trans. Mechatron. 11(3), 280–289 (2006)CrossRefGoogle Scholar
  23. 23.
    Medina, J.R., Lawitzky, M., Mörtl, A., Lee, D., Hirche, S.: An experience-driven robotic assistant acquiring human knowledge to improve haptic cooperation. In: 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2416–2422. IEEE (2011)Google Scholar
  24. 24.
    Renon, P., Yang, C., Ma, H., Cui, R.: Haptic interaction between human and virtual icub robot using novint falcon with chai3d and matlab. In: 2013 32nd Chinese Control Conference (CCC), pp. 6045–6050 (2013)Google Scholar
  25. 25.
    Simulator Web Site. Wiki for the icub simulator specifications from its installation to its use. http://www.eris.liralab.it/wiki/ (2012)
  26. 26.
    iCub robot Web Site. Official web site concerning the iCub projects around the europe. http://www.iCub.org/ (2012)
  27. 27.
    Martin, S., Hillier, N.: Characterisation of the novint falcon haptic device for application as a robot manipulator. In: Australasian Conference on Robotics and Automation (ACRA), pp. 291–292. Citeseer (2009)Google Scholar
  28. 28.
    CHAI3D Web Site. Set of open-source libraries providing an environment for haptic real time interactive simulations. http://www.chai3d.org/documentation.html (2012)
  29. 29.
    de Pascale, M., de Pascale, G., Prattichizzo, D., Barbagli, F.: The haptik library: a component based architecture for haptic devices access. In: Proceedings of EuroHaptics (2004)Google Scholar
  30. 30.
  31. 31.
    Ju, Z., Yang, C., Li, Z., Cheng, L., Ma, H.: Teleoperation of humanoid baxter robot using haptic feedback. In: International Conference on Multisensor Fusion and Information Integration for Intelligent Systems (MFI), 2014, pp. 1–6 (2014)Google Scholar
  32. 32.
    Wang, H., Low, K.H., Gong, F., Wang, M.Y.: A virtual circle method for kinematic mapping human hand to a non-anthropomorphic robot. In: ICARCV 2004 8th Control, Automation, Robotics and Vision Conference, 2004, vol. 2, pp. 1297–1302. IEEE (2004)Google Scholar
  33. 33.
    Dubey, R.V., Everett, S., Pernalete, N., Manocha, K.A.: Teleoperation assistance through variable velocity mapping. IEEE Trans. Robot. Autom 17(5), 761–766 (2001)CrossRefGoogle Scholar
  34. 34.
    Pernalete, N., Yu, W., Dubey, R., Moreno, W.: Development of a robotic haptic interface to assist the performance of vocational tasks by people with disabilities. In: Proceedings. ICRA’02. IEEE International Conference on Robotics and Automation, vol. 2, pp. 1269–1274. IEEE (2002)Google Scholar
  35. 35.
    Rastegar, J., Perel, D.: Generation of manipulator workspace boundary geometry using the monte carlo method and interactive computer graphics. J. Mech. Des. 112(3), 452–454 (1990)CrossRefGoogle Scholar
  36. 36.
    Farkhatdinov, I., Ryu, J.-H.: Hybrid position-position and position-speed command strategy for the bilateral teleoperation of a mobile robot. In: International Conference on Control, Automation and Systems, 2007. ICCAS’07, pp. 2442–2447. IEEE (2007)Google Scholar
  37. 37.
    Ahn, S.H., Park, B.S., Yoon, J.S.: A teleoperation position control for 2-dof manipulators with control input saturation. In: Proceedings. ISIE 2001. IEEE International Symposium on Industrial Electronics, 2001, vol. 3, pp. 1520–1525. IEEE (2001)Google Scholar
  38. 38.
    Corke, P.: Robotics, Vision and Control: Fundamental Algorithms in MATLAB, vol. 73. Springer Science & Business Media, Sydney (2011)Google Scholar
  39. 39.
    Craig, J.J.: Introduction to Robotics, vol. 7. Addison-Wesley, Reading (1989)zbMATHGoogle Scholar

Copyright information

© Science Press and Springer Science+Business Media Singapore 2016

Authors and Affiliations

  1. 1.Key Lab of Autonomous Systems and Networked Control, Ministry of EducationSouth China University of TechnologyGuangzhouChina
  2. 2.Centre for Robotics and Neural SystemsPlymouth UniversityDevonUK
  3. 3.School of AutomationBeijing Institute of TechnologyBeijingChina
  4. 4.State Key Lab of Intelligent Control and Decision of Complex SystemBeijing Institute of TechnologyBeijingChina

Personalised recommendations