Skip to main content

Object Detection and Tracking

  • Chapter
  • First Online:
  • 1722 Accesses

Abstract

Visual sensors provide comprehensive and abundant information of surrounding environment. In this chapter, we will first give a brief introduction of visual recognition with basic concepts and algorithms, followed by the introduction of the useful software toolkit JavaScript Object Notation (JSON) framework. Then we will review a series of vision-based object recognition and tracking techniques. The detection and classification of pedestrians in infrared thermal images is investigated using deep learning method. And the algorithm for tracking single moving objects based on JSON visual recognition framework is also introduced. As the extension of single moving objects tracking, we will also show the visual tracking to multiple moving objects with the aid of the particle swarm optimization (PSO) method.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Zitova, B., Flusser, J.: Image registration methods: a survey. Image Vis. Comput. 21(11), 977–1000 (2003)

    Article  Google Scholar 

  2. Reddy, B.S., Chatterji, B.N.: An fft-based technique for translation, rotation, and scale-invariant image registration. IEEE Trans. Image Process. 5(8), 1266–1271 (1996)

    Article  Google Scholar 

  3. Chui, H., Rangarajan, A.: A new point matching algorithm for non-rigid registration. Comput. Vis. Image Underst. 89(2), 114–141 (2003)

    Article  MATH  Google Scholar 

  4. Sotak, G., Boyer, K.L.: The laplacian-of-gaussian kernel: a formal analysis and design procedure for fast, accurate convolution and full-frame output. Comput. Vis., Graph., Image Process. 48(2), 147–189 (1989)

    Article  Google Scholar 

  5. Chen, B.Y.: An explicit formula of hessian determinants of composite functions and its applications. Kragujevac J Math 36(1), 27–39 (2012)

    MathSciNet  MATH  Google Scholar 

  6. Maini, R., Aggarwal, H.: Study and comparison of various image edge detection techniques. Int. J Image Process. (IJIP) 3(1), 1–11 (2009)

    Google Scholar 

  7. Ramasubramanian, V., Paliwal, K.K.: Fast k-dimensional tree algorithms for nearest neighbor search with application to vector quantization encoding. IEEE Trans. Signal Process. 40(3), 518–531 (1992)

    Article  Google Scholar 

  8. Szeliski, R., Shum, H.-Y.: Creating full view panoramic image mosaics and environment maps. In: Proceedings of the 24th Annual Conference on Computer Graphics And Interactive Techniques, pp. 251–258. ACM Press/Addison-Wesley Publishing Co. (1997)

    Google Scholar 

  9. Introducing json. http://json.org/

  10. Rapidjson: main page. http://miloyip.github.io/rapidjson/

  11. Xiao, J., Hays, J., Ehinger, K.A., Oliva, A., Torralba, A.: Sun database: large-scale scene recognition from abbey to zoo. In: Proceedings of the 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3485–3492 (2010)

    Google Scholar 

  12. Tighe, J., Lazebnik, S.: Scalable nonparametric image parsing with superpixels. Springer, Berlin (2010)

    Google Scholar 

  13. Bell, S., Upchurch, P., Snavely, N., Bala, K.: Opensurfaces: a richly annotated catalog of surface appearance. ACM Trans. Graph. (TOG) 32(4), 111 (2013)

    Article  Google Scholar 

  14. Song, S., Xiao, J.: Tracking revisited using RGBD camera: unified benchmark and baselines. In: Proceedings of the 2013 IEEE International Conference on Computer Vision (ICCV), pp. 233–240. IEEE (2013)

    Google Scholar 

  15. Ortiz, A.: An introduction to metaprogramming. Linux J. 158, 6 (2007)

    Google Scholar 

  16. David, G., Lopez, A.M., Sappa, A.D., Thorsten, G.: Survey of pedestrian detection for advanced driver assistance systems. IEEE Trans. Pattern Anal. Mach. Intell. 32(7), 1239–1258 (2010)

    Article  Google Scholar 

  17. Khellal, A., Ma, H., Fei, Q.: Pedestrian classification and detection in far infrared images. Intelligent Robotics and Applications, pp. 511–522. Springer, Switzerland (2015)

    Chapter  Google Scholar 

  18. Liu, Q., Zhuang, J., Ma, J.: Robust and fast pedestrian detection method for far-infrared automotive driving assistance systems. Infrared Phys. Technol. 60(5), 288–299 (2013)

    Article  Google Scholar 

  19. Bengio, Y.: Learning deep architectures for AI. Found. Trends Mach. Learn. 2(1), 1–127 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lecun, Y.L., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  21. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst. 25, 2012 (2012)

    Google Scholar 

  22. Sermanet, P., Eigen, D., Zhang, X., Mathieu, M., Fergus, R., Lecun, Y.: Overfeat: integrated recognition, localization and detection using convolutional networks. Eprint Arxiv (2013)

    Google Scholar 

  23. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. Eprint Arxiv (2014)

    Google Scholar 

  24. Zeiler, M.D., Fergus, R.: Visualizing and Understanding Convolutional Networks. Lecture Notes in Computer Science, vol. 8689, pp. 818–833. Springer, Switzerland (2013)

    Google Scholar 

  25. Powers, D.M.: Evaluation: from precision, recall and F-measure to ROC, informedness, markedness and correlation. J. Mach. Learn. Technol. 2, 37–63 (2011)

    Google Scholar 

  26. Liu, J., Ren, X., Ma, H.: Adaptive swarm optimization for locating and tracking multiple targets. Appl. Soft Comput. 12(11), 3656–3670 (2012)

    Article  Google Scholar 

  27. Eberhart, R., Kennedy, J.: A new optimizer using particle swarm theory. In: Proceedings of the Sixth International Symposium on Micro Machine and Human Science MHS ’95, pp. 39–43 (1995)

    Google Scholar 

  28. Zhang, J.R., Zhang, J., Lok, T.M., Lyu, M.R.: A hybrid particle swarm optimization-back-propagation algorithm for feedforward neural network training. Appl. Math. Comput. 185(2), 1026–1037 (2007)

    MATH  Google Scholar 

  29. Juang, C.F.: A hybri of genetic algorithm and particle swarm optimization for recurrent network design. IEEE Trans. Syst. Man Cybern. Part B-Cybern. 34(2), 997–1006 (2004)

    Article  Google Scholar 

  30. Meissner, M., Schmuker, M., Schneider, G.: Optimized particle swarm optimization (OPSO) and its application to artificial neural network training. BMC Bioinf. 7, 125 (2006)

    Article  Google Scholar 

  31. Coello, C.A.C., Pulido, G.T., Lechuga, M.S.: Handling multiple objectives with particle swarm optimization. IEEE Trans. Evol. Comput. 8(3), 256–279 (2004)

    Article  Google Scholar 

  32. Kao, Y.T., Zahara, E.: A hybrid genetic algorithm and particle swarm optimization for multimodal functions. Appl. Soft Comput. 8(2), 849–857 (2008)

    Article  Google Scholar 

  33. Brits, R., Engelbrecht, A.P., van den Bergh, F.: Locating multiple optima using particle swarm optimization. Appl. Math. Comput. 189(2), 1859–1883 (2007)

    MathSciNet  MATH  Google Scholar 

  34. Liang, J.J., Qin, A.K., Suganthan, P.N., Baskar, S.: Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEEE Trans. Evol. Comput. 10(3), 281–295 (2006)

    Article  Google Scholar 

  35. Jin, Y., Branke, H.: Evolutionary optimization in uncertain environments - a survey. IEEE Trans. Evol. Comput. 9(3), 303–317 (2005)

    Article  Google Scholar 

  36. Blackwell, T., Branke, J.: Multi-swarm optimization in dynamic environments. Appl. Evol. Comput. 3005, 489–500 (2004)

    Article  Google Scholar 

  37. Gaing, Z.L.: A particle swarm optimization approach for optimum design of PID controller in AVR system. IEEE Trans. Energy Convers. 19(2), 384–391 (2004)

    Article  Google Scholar 

  38. Abido, M.A.: Optimal design of power-system stabilizers using particle swarm optimization. IEEE Trans. Energy Convers. 17(3), 406–413 (2002)

    Article  Google Scholar 

  39. Esmin, A.A.A., Lambert-Torres, G., de Souza, A.C.Z.: A hybrid particle swarm optimization applied to loss power minimization. IEEE Trans. Power Syst. 20(2), 859–866 (2005)

    Article  Google Scholar 

  40. Yoshida, H., Kawata, K., Fukuyama, Y., Takayama, S., Nakanishi, Y.: A particle swarm optimization for reactive power and voltage control considering voltage security assessment. IEEE Trans. Power Syst. 15(4), 1232–1239 (2000)

    Article  Google Scholar 

  41. Ciuprina, G., Ioan, D., Munteanu, I.: Use of intelligent-particle swarm optimization in electromagnetics. IEEE Trans. Magn. 38(2), 1037–1040 (2002)

    Article  Google Scholar 

  42. Robinson, J., Rahmat-Samii, Y.: Particle swarm optimization in electromagnetics. IEEE Trans. Antennas Propag. 52(2), 397–407 (2004)

    Article  MathSciNet  Google Scholar 

  43. De Falco, I., Della Cioppa, A., Tarantino, E.: Facing classification problems with particle swarm optimization. Appl. Soft Comput. 7(3), 652–658 (2007)

    Article  Google Scholar 

  44. Huang, C.L., Dun, J.F.: A distributed pso-svm hybrid system with feature selection and parameter optimization. Appl. Soft Comput. 8(4), 1381–1391 (2008)

    Article  Google Scholar 

  45. Shi, Y., Eberhart, R.: A modified particle swarm optimizer. In: Proceedings of the IEEE World Congress on Computational Intelligence, pp. 69–73 (1998)

    Google Scholar 

  46. Poli, R.: Mean and variance of the sampling distribution of particle swarm optimizers during stagnation. IEEE Trans. Evol. Comput. 13(4), 712–721 (2009)

    Article  Google Scholar 

  47. Clerc, M., Kennedy, J.: The particle swarm - explosion, stability, and convergence in a multidimensional complex space. IEEE Trans. Evol. Comput. 6(1), 58–73 (2002)

    Article  Google Scholar 

  48. Trelea, I.C.: The particle swarm optimization algorithm: convergence analysis and parameter selection. Inf. Process. Lett. 85(6), 317–325 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  49. van den Bergh, F., Engelbrecht, A.P.: A study of particle swarm optimization particle trajectories. Inf. Sci. 176(8), 937–971 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chenguang Yang or Hongbin Ma .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Science Press and Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Yang, C., Ma, H., Fu, M. (2016). Object Detection and Tracking. In: Advanced Technologies in Modern Robotic Applications. Springer, Singapore. https://doi.org/10.1007/978-981-10-0830-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-0830-6_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-0829-0

  • Online ISBN: 978-981-10-0830-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics