Object Detection and Tracking

  • Chenguang YangEmail author
  • Hongbin MaEmail author
  • Mengyin Fu


Visual sensors provide comprehensive and abundant information of surrounding environment. In this chapter, we will first give a brief introduction of visual recognition with basic concepts and algorithms, followed by the introduction of the useful software toolkit JavaScript Object Notation (JSON) framework. Then we will review a series of vision-based object recognition and tracking techniques. The detection and classification of pedestrians in infrared thermal images is investigated using deep learning method. And the algorithm for tracking single moving objects based on JSON visual recognition framework is also introduced. As the extension of single moving objects tracking, we will also show the visual tracking to multiple moving objects with the aid of the particle swarm optimization (PSO) method.


Particle Swarm Optimization Feature Point Inertia Weight Convolutional Neural Network Particle Swarm Optimization Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Zitova, B., Flusser, J.: Image registration methods: a survey. Image Vis. Comput. 21(11), 977–1000 (2003)CrossRefGoogle Scholar
  2. 2.
    Reddy, B.S., Chatterji, B.N.: An fft-based technique for translation, rotation, and scale-invariant image registration. IEEE Trans. Image Process. 5(8), 1266–1271 (1996)CrossRefGoogle Scholar
  3. 3.
    Chui, H., Rangarajan, A.: A new point matching algorithm for non-rigid registration. Comput. Vis. Image Underst. 89(2), 114–141 (2003)CrossRefzbMATHGoogle Scholar
  4. 4.
    Sotak, G., Boyer, K.L.: The laplacian-of-gaussian kernel: a formal analysis and design procedure for fast, accurate convolution and full-frame output. Comput. Vis., Graph., Image Process. 48(2), 147–189 (1989)CrossRefGoogle Scholar
  5. 5.
    Chen, B.Y.: An explicit formula of hessian determinants of composite functions and its applications. Kragujevac J Math 36(1), 27–39 (2012)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Maini, R., Aggarwal, H.: Study and comparison of various image edge detection techniques. Int. J Image Process. (IJIP) 3(1), 1–11 (2009)Google Scholar
  7. 7.
    Ramasubramanian, V., Paliwal, K.K.: Fast k-dimensional tree algorithms for nearest neighbor search with application to vector quantization encoding. IEEE Trans. Signal Process. 40(3), 518–531 (1992)CrossRefGoogle Scholar
  8. 8.
    Szeliski, R., Shum, H.-Y.: Creating full view panoramic image mosaics and environment maps. In: Proceedings of the 24th Annual Conference on Computer Graphics And Interactive Techniques, pp. 251–258. ACM Press/Addison-Wesley Publishing Co. (1997)Google Scholar
  9. 9.
    Introducing json.
  10. 10.
  11. 11.
    Xiao, J., Hays, J., Ehinger, K.A., Oliva, A., Torralba, A.: Sun database: large-scale scene recognition from abbey to zoo. In: Proceedings of the 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3485–3492 (2010)Google Scholar
  12. 12.
    Tighe, J., Lazebnik, S.: Scalable nonparametric image parsing with superpixels. Springer, Berlin (2010)Google Scholar
  13. 13.
    Bell, S., Upchurch, P., Snavely, N., Bala, K.: Opensurfaces: a richly annotated catalog of surface appearance. ACM Trans. Graph. (TOG) 32(4), 111 (2013)CrossRefGoogle Scholar
  14. 14.
    Song, S., Xiao, J.: Tracking revisited using RGBD camera: unified benchmark and baselines. In: Proceedings of the 2013 IEEE International Conference on Computer Vision (ICCV), pp. 233–240. IEEE (2013)Google Scholar
  15. 15.
    Ortiz, A.: An introduction to metaprogramming. Linux J. 158, 6 (2007)Google Scholar
  16. 16.
    David, G., Lopez, A.M., Sappa, A.D., Thorsten, G.: Survey of pedestrian detection for advanced driver assistance systems. IEEE Trans. Pattern Anal. Mach. Intell. 32(7), 1239–1258 (2010)CrossRefGoogle Scholar
  17. 17.
    Khellal, A., Ma, H., Fei, Q.: Pedestrian classification and detection in far infrared images. Intelligent Robotics and Applications, pp. 511–522. Springer, Switzerland (2015)CrossRefGoogle Scholar
  18. 18.
    Liu, Q., Zhuang, J., Ma, J.: Robust and fast pedestrian detection method for far-infrared automotive driving assistance systems. Infrared Phys. Technol. 60(5), 288–299 (2013)CrossRefGoogle Scholar
  19. 19.
    Bengio, Y.: Learning deep architectures for AI. Found. Trends Mach. Learn. 2(1), 1–127 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Lecun, Y.L., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)CrossRefGoogle Scholar
  21. 21.
    Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst. 25, 2012 (2012)Google Scholar
  22. 22.
    Sermanet, P., Eigen, D., Zhang, X., Mathieu, M., Fergus, R., Lecun, Y.: Overfeat: integrated recognition, localization and detection using convolutional networks. Eprint Arxiv (2013)Google Scholar
  23. 23.
    Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. Eprint Arxiv (2014)Google Scholar
  24. 24.
    Zeiler, M.D., Fergus, R.: Visualizing and Understanding Convolutional Networks. Lecture Notes in Computer Science, vol. 8689, pp. 818–833. Springer, Switzerland (2013)Google Scholar
  25. 25.
    Powers, D.M.: Evaluation: from precision, recall and F-measure to ROC, informedness, markedness and correlation. J. Mach. Learn. Technol. 2, 37–63 (2011)Google Scholar
  26. 26.
    Liu, J., Ren, X., Ma, H.: Adaptive swarm optimization for locating and tracking multiple targets. Appl. Soft Comput. 12(11), 3656–3670 (2012)CrossRefGoogle Scholar
  27. 27.
    Eberhart, R., Kennedy, J.: A new optimizer using particle swarm theory. In: Proceedings of the Sixth International Symposium on Micro Machine and Human Science MHS ’95, pp. 39–43 (1995)Google Scholar
  28. 28.
    Zhang, J.R., Zhang, J., Lok, T.M., Lyu, M.R.: A hybrid particle swarm optimization-back-propagation algorithm for feedforward neural network training. Appl. Math. Comput. 185(2), 1026–1037 (2007)zbMATHGoogle Scholar
  29. 29.
    Juang, C.F.: A hybri of genetic algorithm and particle swarm optimization for recurrent network design. IEEE Trans. Syst. Man Cybern. Part B-Cybern. 34(2), 997–1006 (2004)CrossRefGoogle Scholar
  30. 30.
    Meissner, M., Schmuker, M., Schneider, G.: Optimized particle swarm optimization (OPSO) and its application to artificial neural network training. BMC Bioinf. 7, 125 (2006)CrossRefGoogle Scholar
  31. 31.
    Coello, C.A.C., Pulido, G.T., Lechuga, M.S.: Handling multiple objectives with particle swarm optimization. IEEE Trans. Evol. Comput. 8(3), 256–279 (2004)CrossRefGoogle Scholar
  32. 32.
    Kao, Y.T., Zahara, E.: A hybrid genetic algorithm and particle swarm optimization for multimodal functions. Appl. Soft Comput. 8(2), 849–857 (2008)CrossRefGoogle Scholar
  33. 33.
    Brits, R., Engelbrecht, A.P., van den Bergh, F.: Locating multiple optima using particle swarm optimization. Appl. Math. Comput. 189(2), 1859–1883 (2007)MathSciNetzbMATHGoogle Scholar
  34. 34.
    Liang, J.J., Qin, A.K., Suganthan, P.N., Baskar, S.: Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEEE Trans. Evol. Comput. 10(3), 281–295 (2006)CrossRefGoogle Scholar
  35. 35.
    Jin, Y., Branke, H.: Evolutionary optimization in uncertain environments - a survey. IEEE Trans. Evol. Comput. 9(3), 303–317 (2005)CrossRefGoogle Scholar
  36. 36.
    Blackwell, T., Branke, J.: Multi-swarm optimization in dynamic environments. Appl. Evol. Comput. 3005, 489–500 (2004)CrossRefGoogle Scholar
  37. 37.
    Gaing, Z.L.: A particle swarm optimization approach for optimum design of PID controller in AVR system. IEEE Trans. Energy Convers. 19(2), 384–391 (2004)CrossRefGoogle Scholar
  38. 38.
    Abido, M.A.: Optimal design of power-system stabilizers using particle swarm optimization. IEEE Trans. Energy Convers. 17(3), 406–413 (2002)CrossRefGoogle Scholar
  39. 39.
    Esmin, A.A.A., Lambert-Torres, G., de Souza, A.C.Z.: A hybrid particle swarm optimization applied to loss power minimization. IEEE Trans. Power Syst. 20(2), 859–866 (2005)CrossRefGoogle Scholar
  40. 40.
    Yoshida, H., Kawata, K., Fukuyama, Y., Takayama, S., Nakanishi, Y.: A particle swarm optimization for reactive power and voltage control considering voltage security assessment. IEEE Trans. Power Syst. 15(4), 1232–1239 (2000)CrossRefGoogle Scholar
  41. 41.
    Ciuprina, G., Ioan, D., Munteanu, I.: Use of intelligent-particle swarm optimization in electromagnetics. IEEE Trans. Magn. 38(2), 1037–1040 (2002)CrossRefGoogle Scholar
  42. 42.
    Robinson, J., Rahmat-Samii, Y.: Particle swarm optimization in electromagnetics. IEEE Trans. Antennas Propag. 52(2), 397–407 (2004)MathSciNetCrossRefGoogle Scholar
  43. 43.
    De Falco, I., Della Cioppa, A., Tarantino, E.: Facing classification problems with particle swarm optimization. Appl. Soft Comput. 7(3), 652–658 (2007)CrossRefGoogle Scholar
  44. 44.
    Huang, C.L., Dun, J.F.: A distributed pso-svm hybrid system with feature selection and parameter optimization. Appl. Soft Comput. 8(4), 1381–1391 (2008)CrossRefGoogle Scholar
  45. 45.
    Shi, Y., Eberhart, R.: A modified particle swarm optimizer. In: Proceedings of the IEEE World Congress on Computational Intelligence, pp. 69–73 (1998)Google Scholar
  46. 46.
    Poli, R.: Mean and variance of the sampling distribution of particle swarm optimizers during stagnation. IEEE Trans. Evol. Comput. 13(4), 712–721 (2009)CrossRefGoogle Scholar
  47. 47.
    Clerc, M., Kennedy, J.: The particle swarm - explosion, stability, and convergence in a multidimensional complex space. IEEE Trans. Evol. Comput. 6(1), 58–73 (2002)CrossRefGoogle Scholar
  48. 48.
    Trelea, I.C.: The particle swarm optimization algorithm: convergence analysis and parameter selection. Inf. Process. Lett. 85(6), 317–325 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  49. 49.
    van den Bergh, F., Engelbrecht, A.P.: A study of particle swarm optimization particle trajectories. Inf. Sci. 176(8), 937–971 (2006)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Science Press and Springer Science+Business Media Singapore 2016

Authors and Affiliations

  1. 1.Key Lab of Autonomous Systems and Networked Control, Ministry of EducationSouth China University of TechnologyGuangzhouChina
  2. 2.Centre for Robotics and Neural SystemsPlymouth UniversityDevonUK
  3. 3.School of AutomationBeijing Institute of TechnologyBeijingChina
  4. 4.State Key Lab of Intelligent Control and Decision of Complex SystemBeijing Institute of TechnologyBeijingChina

Personalised recommendations