Skip to main content

SUSHI: Density Functional Theory Simulator

  • Chapter
  • First Online:
Computer Simulation of Polymeric Materials
  • 1163 Accesses

Abstract

In the field of multi-scale simulations of polymeric materials, theory is needed to bridge the particle picture treated with coarse-grained molecular dynamics (as in the case of OCTA/COGNAC) and the continuous-field picture treated with the finite element method and other pictures (as in the case of OCTA/MUFFIN). The theory must allow the reduction of the many-body problem to the one-body approximation. OCTA includes a simulator named Simulation Utilities for Soft and Hard Interfaces (SUSHI), which solve the bridging problem. SUSHI has implemented several types of density functional theory (DFT) of polymers. These DFTs address problems relating to interfacial structures and phase-separated structures of polymer melts and blends at scales ranging from several nanometers to several hundred nanometers, e.g., the macrophase separation of polymer blends and the microphase separation of block polymers.

The original version of this chapter was revised. An erratum to this chapter can be found at DOI 10.1007/978-981-10-0815-3_30

An erratum to this chapter can be found at http://dx.doi.org/10.1007/978-981-10-0815-3_30

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.G.E.M. Fraaije, J. Chem. Phys. 99, 9202 (1993)

    Article  CAS  Google Scholar 

  2. R. Hasegawa, M. Doi, Macromolecules 30, 5490 (1997)

    Article  CAS  Google Scholar 

  3. T. Kawakatsu, Statistical Physics of Polymers—An Introduction (Springer-Verlag, Berlin, 2004)

    Book  Google Scholar 

  4. P.G. de Gennes, Scaling Concepts in Polymer Physics (Cornell University Press, Ithaca, 1979)

    Google Scholar 

  5. G.R. Strobl, The Physics of Polymers (Springer-Verlag, Berlin, 1997)

    Book  Google Scholar 

  6. R. Koningsveld, W.H. Stockmayer, E. Nies, Polymer Phase Diagrams (Oxford University, New York, 2001)

    Google Scholar 

  7. H. Czichos, T. Saito, L. Smith, Springer Handbook of Metrology and Testing (Springer-Verlag, Berlin, 2011)

    Book  Google Scholar 

  8. M. Doi, S.F. Edwards, The Theory of Polymer Dynamics (Oxford Science, Oxford, 1986)

    Google Scholar 

  9. L. Leibler, Macromolecules 13, 1602 (1980)

    Article  CAS  Google Scholar 

  10. T. Honda, T. Kawakatsu, Macromolecules 40, 1227 (2007)

    Article  CAS  Google Scholar 

  11. T. Honda, T. Kawakatsu, in Nanostructured Soft Matter, Experiments, Theory and Perspectives: Computer Simulation of Nano-scale Phenomena based on the Dynamic Density Functional Theories Applications of SUSHI in the OCTA System, ed. by A. Zvelindovsky (Springer-Verlag, Berlin, 2007)

    Google Scholar 

  12. P.G. de Gennes, J. Phys. (Paris) 31, 235 (1970)

    Article  Google Scholar 

  13. Y. Bohbot-Raviv, Z.-G. Wang, Phys. Rev. Lett. 85, 3428 (2000)

    Article  CAS  Google Scholar 

  14. G.J. Fleer, M.A. Cohen Stuart, J.M.H.M. Scheutjens, T. Cosgrove, B. Vincent, Polymers at Interfaces (Chapman & Hall, London, 1993)

    Google Scholar 

  15. E. Helfand, Z.R. Wasserman, Macromolecules 9, 879 (1976)

    Article  CAS  Google Scholar 

  16. E. Helfand, Z.R. Wasserman, Macromolecules 11, 960 (1978)

    Article  CAS  Google Scholar 

  17. E. Helfand, Z.R. Wasserman, Macromolecules 11, 994 (1980)

    Article  Google Scholar 

  18. M.W. Matsen, F.S. Bates, Macromolecules 29, 1091 (1996)

    Article  CAS  Google Scholar 

  19. A.V. Zvelindovsky, G.J.A. Sevink, B.A.C. van Vlimmeren, N.M. Maurits, J.G.E.M. Fraaije, Phys. Rev. E 57, R4879 (1998)

    Article  CAS  Google Scholar 

  20. A.V. Zvelindovsky, B.A.C. van Vlimmeren, G.J.A. Sevink, N.M. Maurits, J.G.E.M. Fraaije, J. Chem. Phys. 109, 8751 (1998)

    Article  CAS  Google Scholar 

  21. A.V. Zvelindovsky, G.J.A. Sevink, J.G.E.M. Fraaije, Phys. Rev. E 62, R3063 (2000)

    Article  CAS  Google Scholar 

  22. A.V. Zvelindovsky, G.J.A. Sevink, Europhys. Lett. 62, 370 (2003)

    Article  CAS  Google Scholar 

  23. H. Morita, T. Kawakatsu, Macromolecules 34, 8777 (2001)

    Article  CAS  Google Scholar 

  24. H. Morita, T. Kawakatsu, M. Doi, D. Yamaguchi, M. Takenaka, T. Hashimoto, Macromolecules 35, 7473 (2002)

    Article  CAS  Google Scholar 

  25. D.Q. Ly, T. Honda, T. Kawakatsu, A.V. Zvelindovsky, Macromolecules 40, 2928 (2007)

    Article  CAS  Google Scholar 

  26. D.Q. Ly, T. Honda, T. Kawakatsu, A.V. Zvelindovsky, Macromolecules 41, 4501 (2008)

    Article  CAS  Google Scholar 

  27. D.Q. Ly, T. Honda, T. Kawakatsu, A.V. Zvelindovsky, Soft Matter 5, 4814 (2009)

    Article  CAS  Google Scholar 

  28. T. Honda, T. Kawakatsu, J. Chem. Phys. 129, 114904 (2008)

    Article  Google Scholar 

  29. F.S. Bates, G.H. Fredrickson, Phys. Today 52, 32 (1999)

    Article  CAS  Google Scholar 

  30. I.W. Hamley, Block Copolymers; Oxford (Oxford University Press, Oxford, 1999)

    Google Scholar 

  31. T. Honda, T. Kawakatsu, Macromolecules 39, 2340 (2006)

    Article  CAS  Google Scholar 

  32. C.A. Tyler, D.C. Morse, Phys. Rev. Lett. 95, 208302 (2005)

    Article  Google Scholar 

Download references

Acknowledgment

The author thank Prof. T. Kawakatsu in Tohoku University for many comments for this chapter and Prof. T. Koyama in Nagoya University for helpful information of phase field method. The implementation of parallel computation of SUSHI with MPI + GPU had been supported by the Global Scientific Information and Computing center in Tokyo Institute of Technology with supercomputer TSUBAME2.5. We thank Prof. T. Aoki, Mr. J. Sasaki, and Mr. Y. Matsumoto for giving us helpful information. The implementation of SUSHI with MPI library also had been supported by the Information Initiative Center in Hokkaido University with supercomputer SR16000/M1 and RIKEN Advanced Institute for Computational Science with K-computer. We thank Prof. M. Omiya in Hokkaido University, Dr. Hagita in National Defense Academy of Japan, and High Performance Computing Infrastructure in Japan. We also thank members of the technical seminar of polymer simulation organized by Japan Association for Chemical Innovation, for giving us many comments and opportunities of discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Honda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Honda, T. (2016). SUSHI: Density Functional Theory Simulator. In: Chemical Innovation, J. (eds) Computer Simulation of Polymeric Materials. Springer, Singapore. https://doi.org/10.1007/978-981-10-0815-3_5

Download citation

Publish with us

Policies and ethics