Skip to main content
  • 663 Accesses

Abstract

The multisensor fusion estimation has attracted considerable research interest during the past decades and has found applications in a variety of areas, such as target tracking and localization, guidance and navigation, and fault detection [1, 2, 5, 17]. Multisensor fusion is used because of potentially improved estimation accuracy [2, 71] and enhanced reliability and robustness against sensor failures. Many useful fusion estimation methods have been presented in the literature (see, e.g., [8, 12, 14, 20, 25, 36, 41, 46, 58, 69, 70, 75, 77, 80, 86] and the references therein). Recently, the rapid developments of wireless sensor networks (WSNs) have greatly widen applications of the multisensor fusion estimation theory, which in turn, helps the WSNs monitor the environment more accurately and efficiently. Therefore, the WSN-based multisensor fusion estimation and its applications have attracted considerable research interest during the past decade [22, 39, 57, 83].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bar-Shalom Y, Li XR (1990) Multitarget-multisensor tracking: advanced applications, vol 1. Artech House, Norwood

    Google Scholar 

  2. Bar-Shalom Y, Li XR, Kirubarajan T (2001) Estimation with applications to tracking and navigation. Wilely, New York

    Book  Google Scholar 

  3. Cabral FR, Brossier JM (2014) Scalar quantization for estimation: from an asymptotic design to a practical solution. IEEE Trans Signal Process 62(11):2860–2870

    Article  MathSciNet  Google Scholar 

  4. Carli R, Fagnani F, Frasca P, Zampieri S (2008) A probabilistic analysis of the average consensus algorithm with quantized communication. In: Proceedings of the 17th IFAC world congress, Seoul, pp 8062–8067

    Google Scholar 

  5. Carlson NA (1990) Federated square root filter for decentralized parallel processes. IEEE Trans Aerosp Electron Syst 26(3):517–529

    Article  Google Scholar 

  6. Cattivelli FS, Sayed AH (2010) Diffusion strategies for distributed Kalman filtering and smoothing. IEEE Trans Autom Control 55(9):2069–2084

    Article  MathSciNet  Google Scholar 

  7. Cattivelli FS, Sayed AH (2010) Diffusion LMS strategies for distributed estimation. IEEE Trans Signal Process 58(3):1035–1048

    Article  MathSciNet  Google Scholar 

  8. Chang KC, Tian Z, Mori S (2004) Performance evaluation for MAP state estimate fusion. IEEE Trans Aerosp Electron Syst 40(2):706–714

    Article  Google Scholar 

  9. Chang LY, Chen PY, Wang TY, Chen CS (2011) A low-cost VLSI architecture for robust distributed estimation in wireless sensor networks. IEEE Trans Circuit Syst-I Regul Pap 58(6):1277–1286

    Article  MathSciNet  Google Scholar 

  10. Chen HM, Zhang KS, Li XR (2004) Optimal data compression for multisensor target tracking with communication constraints. In: Proceedings of the 43th IEEE conference on decision and control, Atlantis, pp 8179–8184

    Google Scholar 

  11. Chen B, Yu L, Zhang WA (2011) Robust Kalman filtering for uncertain state delay systems with random observation delays and missing measurements. IET Control Theory Appl 5(17):1945–1954

    Article  MathSciNet  Google Scholar 

  12. Chen B, Yu L, Zhang WA, Liu AD (2013) Robust information fusion estimator for multiple delay-tolerant sensors with different failure rates. IEEE Trans Circuit Syst-I Regul Pap 60(2):401–414

    Article  MathSciNet  Google Scholar 

  13. Chiuso A, Schenato L (2011) Information fusion strategies and performance bounds in packet-drop networks. Automatica 47:1304–1316

    Article  MathSciNet  MATH  Google Scholar 

  14. Deng ZL, Gao Y, Mao L et al (2005) New approach to information fusion steady-state Kalman filtering. Automatica 41(10):1695–1707

    Article  MathSciNet  MATH  Google Scholar 

  15. Dong H, Wang Z, Ho DWC, Gao H (2010) Variance-constrainted H ∞ filtering for a class of nonlinear time-varying systems with multiple missing measurements: the finite-horizon case. IEEE Trans Signal Process 58(5):2534–2543

    Article  MathSciNet  Google Scholar 

  16. Dong H, Wang Z, Gao H (2010) Robust H ∞ filtering for a class of nonlinear networked systems with multiple stochastic communication delays and packet dropouts. IEEE Trans Signal Process 58(4):1957–1966

    Article  MathSciNet  Google Scholar 

  17. Dong HL, Wang ZD, Gao HJ (2012) Fault detection for Markovian jump systems with sensor saturations and randomly varying nonlinearities. IEEE Trans Circuit Syst-I Regul Pap 59(10):2354–2362

    Article  MathSciNet  Google Scholar 

  18. Dong H, Wang Z, Gao H (2012) Distributed filtering for a class of time-varying systems over sensor networks with quantization errors and successive packet dropouts. IEEE Trans Signal Process 60(6):3164–3173

    Article  MathSciNet  Google Scholar 

  19. Dimakis AG, Kar S, Moura JMF, Rabbat MG, Scaglione A (2010) Gossip algorithms for distributed signal processing. Proc IEEE 98(11):1847–1864

    Article  Google Scholar 

  20. Duan Z, Li XR (2013) Lossless linear transformation of sensor data for distributed estimation fusion. IEEE Trans Signal Process 59(1):362–372

    Article  MathSciNet  Google Scholar 

  21. Epstein M, Shi L, Tiwari A, Murry R (2008) Probabilistic performance of state estimation across a lossy network. Automatica 44(12):3046–3053

    Article  MathSciNet  MATH  Google Scholar 

  22. Fang J, Li H (2008) Distributed adaptive quantization for wireless sensor networks: from delta modulation to maximum likelihood. IEEE Trans Signal Process 56(10):5246–5257

    Article  MathSciNet  Google Scholar 

  23. Fang J, Li H (2009) Hyperplane-based vector quantization for distributed estimation in wireless sensor networks. IEEE Trans Inf Theory 55:5682–5699

    Article  MathSciNet  Google Scholar 

  24. Fu MY, de Souza CE (2009) State estimation for linear discrete-time systems using quantized measurements. Automatica 45(12):2937–2945

    Article  MathSciNet  MATH  Google Scholar 

  25. Gan Q, Harris CJ (2001) Comparison of two measurement fusion methods for Kalman-filter-based multisensor data fusion. IEEE Trans Aerosp Electron Syst 37(1):273–280

    Article  Google Scholar 

  26. Ghasemi N, Dey S (2008) Power-efficient dynamic quantization for multisensor HMM state estimation over fading channels. In: The 3rd international symposium on communications, control and signal processing, St Julians, pp 1553–1558

    Google Scholar 

  27. Giridhar A, Kumar PR (2006) Towards a theory of in-network computation in wireless sensor networks. IEEE Commun Mag 44(4):98–107

    Article  Google Scholar 

  28. He LD, Han DF, Wang XF, Shi L (2013) Optimal linear state estimation over a packet-dropping network using linear temporal coding. Automatica 49(4):1075–1082

    Article  MathSciNet  MATH  Google Scholar 

  29. Hounkpevi FO, Yaz EE (2007) Robust minimum variance linear state estimators for multiple sensors with different failure rates. Automatica 43(7):1274–1280

    Article  MathSciNet  MATH  Google Scholar 

  30. Hu L, Wang Z, Liu X (2015) Dynamic state estimation of power systems with quantization effects: a recursive filter approach. IEEE Trans Neural Netw Learn Syst. doi:10.1109/TNNLS.2014.2381853

    Google Scholar 

  31. Huang M, Dey S (2007) Stability of Kalman filtering with Markovian packet losses. Automatica 43(4):598–607

    Article  MathSciNet  MATH  Google Scholar 

  32. Jin ZP, Gupta V, Murray RM (2006) State estimation over packet dropping networks using multiple description coding. Automatica 42(9):1441–1452

    Article  MathSciNet  MATH  Google Scholar 

  33. Kar S, Moura JMF (2011) Gossip and distributed Kalman filtering: weak consensus under weak detectability. IEEE Trans Signal Process 59(4):1766–1784

    Article  MathSciNet  Google Scholar 

  34. Kar S, Sinopoli B, Moura JMF (2012) Kalman filtering with intermittent observations: weak convergence to a stationary distribution. IEEE Trans Autom Control 57(2):405–420

    Article  MathSciNet  Google Scholar 

  35. Khan UA, Moura JMF (2008) Distributed the Kalamn filter for large-scale systems. IEEE Trans Signal Process 56(10):4919–4935

    Article  MathSciNet  Google Scholar 

  36. Kim KH (1994) Development of track to track fusion algorithm. In: Proceedings of the American control conference, Maryland, pp 1037–1041

    Google Scholar 

  37. Krishnamurthy V (1995) Estimation of quantized linear errors-in-variables models original research. Automatica 31(10):1459–1464

    Article  MathSciNet  MATH  Google Scholar 

  38. Lerdsuwanakij K, Chugg KM, Polydoros A (1999) Quantization-based estimation. In: Conference record of the thirty-third asilomar conference on signals, systems, and computers, Pacific Grove, pp 37–41

    Google Scholar 

  39. Li JL, AlRegib G (2009) Distributed estimation in energy-constrained wireless sensor networks. IEEE Trans Signal Process 57(10):3746–3758

    Article  MathSciNet  Google Scholar 

  40. Li HB, Fang J (2007) Distributed adaptive quantization and estimation for wireless sensor networks. IEEE Signal Process Lett 14(10):669–672

    Article  Google Scholar 

  41. Li XR, Zhu YM, Wang J, Han CZ (2003) Optimal linear estimation fusion-part I: unified fusion rules. IEEE Trans Inf Theory 49(9):2192–2208

    Article  MATH  Google Scholar 

  42. Liang Y, Chen TW, Pan Q (2010) Optimal linear state estimator with multiple packet dropouts. IEEE Trans Autom Control 55(6):1428–1433

    Article  MathSciNet  Google Scholar 

  43. Lv N, Sun SL (2009) Scalar-weighted fusion estimators for systems with multiple sensors and multiple delayed measurements. In: Proceedings of IEEE conference on decision and control, Shanghai, pp 7599–7602

    Google Scholar 

  44. Ma J, Sun S (2011) Information fusion estimators for systems with multiple sensors of different packet dropout rates. Inf Fusion 12(3):213–222

    Article  Google Scholar 

  45. Ma L, Da F, Zhang KJ (2011) Exponential H ∞ filter design for discrete time-delay stochastic systems with markovian jump parameters and missing measurements. IEEE Trans Circuit Syst-I Regul Pap 58(5):994–1007

    Article  MathSciNet  Google Scholar 

  46. Manyika J, Durrant-Whyte H (1994) Data fusion and sensor management: a decentralized information-theoretic approach. Ellis Horwood, New York

    Google Scholar 

  47. Marano S, Matta V, Willett P (2005) Some approaches to quantization for distributed estimation with data association. IEEE Trans Signal Process 53(3):885–895

    Article  MathSciNet  Google Scholar 

  48. Matveev AS, Savkin AV (2003) The problem of state estimation via asynchronous communication channels with irregular transmission times. IEEE Trans Autom Control 48(4):670–676

    Article  MathSciNet  Google Scholar 

  49. Moayedi M, Foo YK, Soh YC (2010) Adaptive Kalman filtering in networked systems with random sensor delays, multiple packet dropouts and missing measurements. IEEE Trans Signal Process 58(3):1577–1588

    Article  MathSciNet  Google Scholar 

  50. Msechu EJ, Roumeliotis SI, Ribeiro A, Giannakis GB (2008) Decentralized quantized Kalman filtering with scalable communication cost. IEEE Trans Signal Process 56(8):3727–3741

    Article  MathSciNet  Google Scholar 

  51. Olfati-Saber R (2005) Distributed Kalman filter with embedded consensus filters. In: Proceedings of the 44th IEEE conference decision and control, Sevilla, pp 8179–8184

    Google Scholar 

  52. Olfati-Saber R (2007) Distributed Kalman filtering for sensor networks. In: Proceedings of the 46th IEEE conference on decision and control, New Orleans, pp 5492–5498

    Google Scholar 

  53. Penarrocha I, Sanchis R, Albertos P (2012) Estimation in multisensor networked systems with scarce measurements and time varying delays. Syst Control Lett 61:555–562

    Article  MathSciNet  MATH  Google Scholar 

  54. Ribeiro A, Giannakis GB (2006) Bandwidth-constrained distributed estimation for wireless sensor networks-part I: gaussian case. IEEE Trans Signal Process 54(3):1131–1143

    Article  Google Scholar 

  55. Ribeiro A, Giannakis GB (2006) Bandwidth-constrained distributed estimation for wireless sensor networks-part II: unknown probability density function. IEEE Trans Signal Process 54(7):2784–2796

    Article  Google Scholar 

  56. Ribeiro A, Giannakis GB, Roumeliotis SI (2006) SOI-KF: distributed Kalman filtering with low-cost communications using the sign of innovations. IEEE Trans Signal Process 54(12):4782–4795

    Article  Google Scholar 

  57. Ribeiro A, Schizas ID, Roumeliotis SI, Giannakis GB (2010) Kalman filtering in wireless sensor networks. IEEE Control Syst Mag 30(2):66–86

    Article  MathSciNet  Google Scholar 

  58. Roecker JA, McGillem CD (1988) Comparison of two-sensor tracking methods based on state vector fusion and measurement fusion. IEEE Trans Aerosp Electron Syst 24(4):447–449

    Article  Google Scholar 

  59. Sahebsara M, Chen TW, Shah SL (2007) Optimal H 2 filtering in networked control systems with multiple packet dropouts. IEEE Trans Autom Control 52(8):1508–1513

    Article  MathSciNet  Google Scholar 

  60. Schenato L (2008) Optimal estimation in networked control systems subject to random delay and packet drop. IEEE Trans Autom Control 53(5):1311–1317

    Article  MathSciNet  Google Scholar 

  61. Schizas ID, Giannakis GB, Luo ZQ (2007) Distributed estimation using reduced-dimensionality sensor observations. IEEE Trans Signal Process 55(8):4284–4299

    Article  MathSciNet  Google Scholar 

  62. Schizas I, Ribeiro A, Giannakis G (2007) Consensus in ad hoc WSNs with noisy links-part I: distributed estimation of deterministic signals. IEEE Trans Signal Process 56(1):350–364

    Article  MathSciNet  Google Scholar 

  63. Shen XJ, Varshney PK, Zhu YM (2007) Robust distributed maximum likelihood estimation with dependent quantized data. Automatica 43(6):1117–1123

    Article  MathSciNet  MATH  Google Scholar 

  64. Shen B, Wang ZD, Hung YS (2010) Distributed H ∞ -consensus filtering in sensor networks with multiple missing measurements: the finite-horizon case. Automatica 46(10):1682–1688

    Article  MathSciNet  MATH  Google Scholar 

  65. Shen XJ, Zhu YM, You ZS (2010) A sensor quantization algorithm for best linear estimation fusion in bandwidth-constrained systems. In: The 2010 international conference on intelligent control and information processing, Dalian, pp 433–438

    Google Scholar 

  66. Shen X, Zhu Y, You Z (2011) An efficient sensor quantization algorithm for decentralized estimation fusion. Automatica 47:1053–1059

    Article  MathSciNet  MATH  Google Scholar 

  67. Silva EI, Solis MA (2013) An alternative look at the constant-gain Kalman filter for state estimation over erasure channels. IEEE Trans Autom Control 58(12):3259–3265

    Article  Google Scholar 

  68. Sinopoli B, Schenato L, Franceschetti M, Poolla K, Jordan MI, Sastry SS (2004) Kalman filtering with intermittent observations. IEEE Trans Autom Control 49(9):1453–1464

    Article  MathSciNet  Google Scholar 

  69. Song EB, Zhu YM, Zhou J, You ZS (2007) Optimal Kalman filtering fusion with cross-correlated sensor noises. Automatica 43(8):1450–1456

    Article  MathSciNet  MATH  Google Scholar 

  70. Song E, Xu J, Zhu Y (2014) Optimal distributed Kalman filtering fusion with singular covariances of filtering errors and measurement noises. IEEE Trans Autom Control 59(5):1271–1282

    Article  MathSciNet  Google Scholar 

  71. Sun SL, Deng ZL (2004) Multi-sensor optimal information fusion Kalman filter. Automatica 40(6):1017–1023

    Article  MathSciNet  MATH  Google Scholar 

  72. Sun XJ, Deng ZL (2009) Information fusion wiener filter for the multisensor multichannel ARMA signals with time-delayed measurements. IET Signal Process 3(5):403–415

    Article  MathSciNet  Google Scholar 

  73. Sun SL, Lin JY, Xie LH, Xiao WD (2007) Quantized Kalman filtering. In: The 22nd IEEE international symposium on intelligent control, Singapore, pp 7–12

    Google Scholar 

  74. Sun SL, Xie LH, Xiao WD, Soh YC (2008) Optimal linear estimation for systems with multiple packet dropouts. Automatica 44(7):1333–1342

    Article  MathSciNet  MATH  Google Scholar 

  75. Tian X, Bar-Shalom Y (2009) Exact algorithm for four track-to-track fusion configurations: all you wanted to know but were afraid to ask. In: Proceedings of the 12th international conference on information fusion, Seattle, pp 537–544

    Google Scholar 

  76. Varshney RK, Varshney PK (1986) Recrusive estiamtion with uncertain observations in a multisensor environment. IEE Proc F Commun Radar Signal Process 133(6):527–523

    Article  Google Scholar 

  77. Wang YM, Li XR (2012) Distributed estimation fusion with unavailable cross-correlation. IEEE Trans Aerosp Electron Syst 48(1):259–278

    Article  Google Scholar 

  78. Wang ZD, Ho DWC, Liu XH (2003) Variance-constrained filtering for uncertain stochastic systems with missing measurements. IEEE Trans Autom Control 48(7):1254–1258

    Article  MathSciNet  Google Scholar 

  79. Wang ZD, Yang FW, Ho DWC, Liu XH (2005) Robust finite-horizon filtering for stochastic systems with missing measurements. IEEE Signal Process Lett 12(6):437–440

    Article  Google Scholar 

  80. Willner D, Chang CB, Dunn KP (1976) Kalman filter algorithm for a multisensor system. In: Proceedings of the IEEE conference on decision and control, Clearwater, pp 570–574

    Google Scholar 

  81. Xia Y, Shang J, Chen J, Liu GP (2009) Networked data fusion with packet losses and variable delays. IEEE Trans Syst Man Cybern Part B Cybern 39(5):1107–1120

    Article  Google Scholar 

  82. Xiao JJ, Cui SG, Luo ZQ, Goldsmith AJ (2006) Power scheduling of universal decentralized estimation in sensor networks. IEEE Trans Signal Process 54(2):413–422

    Article  MathSciNet  Google Scholar 

  83. Xiao JJ, Ribeiro A, Luo ZQ, Giannakis GB (2006) Distributed compression estimation using wireless sensor networks. IEEE Signal Process Mag 7:27–41

    Article  Google Scholar 

  84. Xiao L, Boyd S, Kim SJ (2007) Distributed average consensus with least-mean-square deviation. J Parallel Distrib Comput 67(1):33–46

    Article  MATH  Google Scholar 

  85. Xiao N, Xie LH, Fu MY (2009) Kalman filtering over unreliable communication networks with bounded Markovian packet dropouts. Int J Robust Nonlinear Control 19(16):1770–1786

    Article  MathSciNet  MATH  Google Scholar 

  86. Xu J, Song E, Luo Y, Zhu Y (2012) Optimal distributed Kalman filtering fusion algorithm without invertibility of estimation error and sensor noise covariances. IEEE Signal Process Lett 19(1):55–58

    Article  Google Scholar 

  87. Yang F, Wang Z, Feng G, Liu X (2009) Robust filtering with randomly varying sensor delay: the finite-horizon case. IEEE Trans Circuit Syst-I Regul Pap 56(3):664–672

    Article  MathSciNet  Google Scholar 

  88. You KY, Fu MY, Xie LH (2011) Mean square stability for Kalman filtering with Markovian packet losses. Automatica 47(12):2647–2657

    Article  MathSciNet  MATH  Google Scholar 

  89. Zhang KS, Li XR (2004) Optimal sensor data quantization for best linear unbiased estimation fusion. In: The 43rd IEEE conference on decision and control, Nassau, pp 2656–2661

    Google Scholar 

  90. Zhang H, Xie L, Zhang D, Soh YC (2004) A reorganized innovation approach to linear estimation. IEEE Trans Autom Control 49(10):1810–1814

    Article  MathSciNet  Google Scholar 

  91. Zhang H, Feng G, Duan G, Lu X (2006) H ∞ filtering for multiple-time-delay measurements. IEEE Trans Signal Process 54(5):1681–1688

    Article  Google Scholar 

  92. Zhang WA, Yu L, Song HB (2009) H ∞ filtering of networked discrete-time systems with random packet losses. Inf Sci 179(22):3944–3955

    Article  MathSciNet  MATH  Google Scholar 

  93. Zhang H, Feng G, Han C (2011) Linear estimation for random delay systems. Syst Control Lett 60(7):450–459

    Article  MathSciNet  MATH  Google Scholar 

  94. Zhang HS, Song X, Shi L (2012) Convergence and mean square stability of suboptimal estimator for systems with measurement packet dropping. IEEE Trans Autom Control 57(5):1248–1253

    Article  MathSciNet  Google Scholar 

  95. Zhou Y, Li JX (2009) Quantized measurement fusion for target tracking in wireless sensor networks. In: In the joint 48th IEEE conference on decision and control and the 28th Chinese control conference, Shanghai, pp 6835–6840

    Google Scholar 

  96. Zhu Y, Song E, Zhou J, You Z (2005) Optimal dimensionality reduction of sensor data in multisensor estimation fusion. IEEE Trans Signal Process 53(3):1631–1639

    MathSciNet  Google Scholar 

  97. Zhu H, Schizas ID, Giannakis GB (2009) Power-efficient dimensionality reduction for distributed channel aware Kalman tracking using WSNs. IEEE Trans Signal Process 57(8):3193–3207

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Science Press, Beijing and Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Zhang, WA., Chen, B., Song, H., Yu, L. (2016). Introduction. In: Distributed Fusion Estimation for Sensor Networks with Communication Constraints. Springer, Singapore. https://doi.org/10.1007/978-981-10-0795-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-0795-8_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-0793-4

  • Online ISBN: 978-981-10-0795-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics