Application of Nanotechnology in Modified Release Systems

  • Costas Demetzos


The most appropriate route of administration is considered to be oral, because of the patient compliance and of economical issues. Drug delivery nanosystems are defined as technological platforms that promote the effective administration of bioactive molecules or therapeutic agents (protein, peptide, antibody, genetic material) in the human organism. Drug delivery nanosystems have been evaluated based on their physicochemical and structural properties and on the way that they behave within biological media. They are developed to optimize the production of new medicines, to ameliorate patient compliance, and to improve their targetability from systemic to specific tissues and cells. Hybrid and chimeric drug delivery nanosystems are two major classes that are categorized based on the nature of the mixing biomaterials to produce the final nanocarrier. Their ability to mimic the functions of natural objects proceeds to the category of bio-inspired drug delivery systems.


Drug delivery nanosystems Routes of administration Controlled release Targeting Bio-inspiration and bioengineering 


  1. 1.
    Alvarez-Lorenzo C, Conheiro A (2013) Bio-inspired drug delivery systems. Curr Opin Biotechnol 24:1–7CrossRefGoogle Scholar
  2. 2.
    Beck A, Reichert JM (2014) Antibody-drug conjugates: present and future. MAbs 6(1):15–17CrossRefPubMedGoogle Scholar
  3. 3.
    Bouchard H, Viskov C, Garcia-Echeverria C (2014) Antibody-drug conjugates—a new wave of cancer drugs. Bioorg Med Chem Lett 24(23):5357–5363. doi: 10.1016/j.bmcl.2014.10.021. Google Scholar
  4. 4.
    Bushman J, Vaugham A, Sheihet L et al (2013) Functionalized nanospheres for targeted delivery of paclitaxel. J Control Release 171(3):315–321CrossRefPubMedGoogle Scholar
  5. 5.
    Chang TMS (1979) Artificial cells as drug carriers in biology and medicine. In: Gregoriadis G (ed) Drug carriers in biology and medicine. Academic, London, pp 271–285Google Scholar
  6. 6.
    Crommelin DJ, FFlorence AT (2013) Towards more effective advanced drug delivery systems. Int J Pharm 454:496–511CrossRefPubMedGoogle Scholar
  7. 7.
    Demetzos C (2008) Differential scanning calorimetry (DSC): a tool to study the thermal behavior of lipid bilayers and liposomal stability. J Liposome Res 18:159–173CrossRefPubMedGoogle Scholar
  8. 8.
    Demetzos C (2015) Biophysics and thermodynamics: the scientific blocks of bio-inspired drug delivery nano systems. AAPS PharmSciTech 16(3):491–495CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Demetzos C, Pippa N (2014) Advanced drug delivery nanosystems (aDDnSs): a mini review. Drug Deliv 21(4):250–257CrossRefPubMedGoogle Scholar
  10. 10.
    Emshanova SE (2008) Drug synthesis methods and production technologies, methodological approaches to the selection of excipients for preparation tablets by direct pressing. Pharm Chem J 42(2):89–94CrossRefGoogle Scholar
  11. 11.
    Feng Y, Zhu Z, Chen W et al (2014) Conjugates of small molecule drugs with antibodies and other proteins. Biomedicines 2:1–13. doi: 10.3390/biomedicines2010001 CrossRefGoogle Scholar
  12. 12.
    Gardikis K, Hatziantoniou S, Bucos M et al (2010) New drug delivery nanosystem combining liposomal and dendrimeric technology (liposomal-locked in dendrimers) for cancer therapy. J Pharm Sci 99(8):3561–3571CrossRefPubMedGoogle Scholar
  13. 13.
    Gardikis K, Hatziantoniou S, Signorelli M et al (2010) Thermodynamics and structural characterization of liposomal locked-in dendrimers as drug carriers. Colloids Surf B Biointerfaces 81(1):11–19CrossRefPubMedGoogle Scholar
  14. 14.
    Gardikis K, Tsimplouli C, Dimas K et al (2010) New chimeric advanced drug delivery nanosystems (Chi-aDDnSs) as doxorubicin carriers. Int J Pharm 402(1–2):231–237CrossRefPubMedGoogle Scholar
  15. 15.
    Gregoriadis G (2008) Liposome research in drug delivery, the early days. J Drug Target 16(7):520–524CrossRefPubMedGoogle Scholar
  16. 16.
    Gupta H, Bhandari D, Sharma A (2009) Recent trends in oral drug delivery: a review. Recent Patents Drug Deliv Formulation 3(2):162–173CrossRefGoogle Scholar
  17. 17.
    Heimburg T (2007) Thermal biophysics of membranes. Wiley –Vott, WeinheimCrossRefGoogle Scholar
  18. 18.
    Khopade AJ, Caruso F, Tzipathi P, Nagaich S, Jain NK (2002) Effect of dendrimer on entrapment and release of bioactive from liposome. Int J Pharm 232(1–2):157–162CrossRefPubMedGoogle Scholar
  19. 19.
    Kiparissides C, Kammona O (2008) Nanotechnology advances in controlled drug delivery systems. Phys Stat Sol 5(12):3828–3833CrossRefGoogle Scholar
  20. 20.
    Lianos GD, Vlachos K, Zoras O et al (2014) Potential of antibody-drug conjugates and novel therapeutics in breast câncer management. Onco Targets Ther 7:491–500PubMedPubMedCentralGoogle Scholar
  21. 21.
    Lin Y, Mao C (2011) Bio-inspired supramolecular self-assembly towards soft nanomaterials. Front Matter Sci 5(3):247–256CrossRefGoogle Scholar
  22. 22.
    Mourelatou EA, Libster D, Nir I et al (2011) Type location and interaction between hyperbranched polymers and liposomes. Relevance to design of potentially advanced drug delivery nanosystem (aDDnSs). J Phys Chem B 115(13):3400–3408CrossRefPubMedGoogle Scholar
  23. 23.
    O’ Neil GJ (1979) The use of antibodies as drug carriers. In: Gregoriadis G (ed) Drug carriers in biology and medicine. Academic, London, pp 23–41Google Scholar
  24. 24.
    Ornes S (2013) Antibody-drug conjugates. Proc Natl Acad Sci U S A 110(34):13695CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Papachristos A, Pippa N, Demetzos C et al (2015) Antibody-drug conjugates: a mini-review. The synopsis of two approved medicines. Drug Deliv, in pressGoogle Scholar
  26. 26.
    Papagiannaros A, Dimas K, Papaionannou GT, Demetzos C (2005) Doxorubicin-PAMAM dendrimer complex attached to liposomes: cytotoxic studies against human cancer cell lines. Int J Pharm 302:29–38CrossRefPubMedGoogle Scholar
  27. 27.
    Peppas NA (2013) Historical perspective on advanced drug delivery: how engineering design and mathematical modeling helped the field nature. Adv Drug Deliv Rev 65(1):5–9CrossRefPubMedGoogle Scholar
  28. 28.
    Pippa N, Gardikis K, Pispas S et al (2014) The physicochemical/thermodynamic balance of advanced drug liposomal delivery systems. J Therm Anal Calorim 116:99–105CrossRefGoogle Scholar
  29. 29.
    Pippa N, Merkouraki M, Pispas S et al (2013) DPPC:MPOx chimeric advanced drug delivery nanosystems (chi-aDDnSs): physicochemical and structural characterization, stability and drug release studies. Int J Pharm 450(1–2):1–10CrossRefPubMedGoogle Scholar
  30. 30.
    Pippa N, Kaditi E, Pispas S et al (2013) PEO-b-PCL: DPPC chimeric nanocarriers: self – assembly aspects in aqueous and biological media and drug incorporation. Soft Matter 9:4073–4082CrossRefGoogle Scholar
  31. 31.
    Rowland M, Noe CR, Smith DA et al (2012) Impact of the pharmaceutical sciences on health care: a reflection over the past 50 years. J Pharm Sci 101:4075–4099CrossRefPubMedGoogle Scholar
  32. 32.
    Sapra P, Betts A, Boni J (2013) Preclinical and clinical pharmacokinetic/pharmacodynamic considerations for antibody-drug conjugates. Expert Rev Clin Pharmacol 6(5):541–554CrossRefPubMedGoogle Scholar
  33. 33.
    Saroglou V, Hatziantoniou S, Smyrniotakis M et al (2006) Synthesis liposomal formulation and thermal effects on phospholipid bilayers of leuprolide. J Peptide Sci 12(1):43–50CrossRefGoogle Scholar
  34. 34.
    Stazz C (2000) Innovation in drug delivery. Patent Care 15:107–137Google Scholar
  35. 35.
    Shefet-Carasso L, Benhar I (2014) Antibody-targeted drugs and drug resistance-challenges and solutions. Drug Resist Updat 18:36–46CrossRefPubMedGoogle Scholar
  36. 36.
    Tiwari G, Tiwari R, Sriwastawa B et al (2012) Drug delivery systems: an updated review. Int J Pharm 2(1):2–11Google Scholar
  37. 37.
    Yoo JW, Irvine JD, Discher DE et al (2011) Bio-inspired, bioengineered and biomimetic drug delivery carriers. Nat Rev Drug Discov 10:521–535CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Singapore 2016

Authors and Affiliations

  • Costas Demetzos
    • 1
  1. 1.Faculty of PharmacyNational & Kapodistrian University of AthensZografouGreece

Personalised recommendations