Application of Nanotechnology in Drug Delivery and Targeting

  • Costas Demetzos


Lipidic nanoparticulate self-assembled structures are effective carriers for drug delivery. This chapter describes the most famous nanotechnological drug delivery systems that are already used in clinical practice and clinical evaluation or in academic research. Liposomes are nanocolloidal lyotropic liquid crystals that are able to deliver bioactive molecules. Their membrane biophysics and thermodynamic properties reflect to the creation of metastable phases that affect their functionality and physicochemical behavior. Thermo- and pH-responsive liposomes are innovative nanotechnological platforms for drug delivery and targeting. Polymeric micelles and polymersomes are nanostructures that are promising drug carriers, while dendrimeric structures are considered as real nanoparticulate systems that are used in drug delivery and as nonviral vectors as well as in prevention of serious infections leading to diseases. Vaccines based on nanoparticles such as liposomes are an emerging technology and liposomes seem to meet the requirement criteria of adjuvanicity.


Packing parameter Liposomes polymersomes micelles Dendrimers Vaccines 


  1. 1.
    Allen T, Stuart DD (1999) Liposome pharmacokinetics classical, sterically stabilized, cationic liposomes and immunoliposomes. In: Janoff AS (ed) Liposomes rational design. Marcel Dekker, New YorkGoogle Scholar
  2. 2.
    De Arou’ jo Lopez SC, dos Santos Giuberti C, Ribeiro Rocha TG et al (2013) Liposomes as carriers of anticancer drugs In: Rangel L (ed) Cancer treatment – conventional and innovative approaches. Rijeka, Croatia. InTECH ISBN 978-953-51-1098-9Google Scholar
  3. 3.
    Attwood D, Florence A (2012) Physical pharmacy. Pharmaceutical Press, Royal Pharmaceutical Society, UKGoogle Scholar
  4. 4.
    Aveling E, Zhou J, Lim YF, Mozafari MR (2006) Targeting lipidic-nanocarriers: current strategies and problems. Pharmakeftiki 19:101–109Google Scholar
  5. 5.
    Bangham AD, Standish MM, Watkins JC (1965) Diffusion of univalent ions across the lamellae of swollen phospholipids. J Mol Biol 13:238–252CrossRefPubMedGoogle Scholar
  6. 6.
    Barenholz Y, Amselem S, Lichtenberg D (1979) A new method for preparation of phospholipid vesicles (liposomes)-French press. FEBS Lett 99(1):210–214CrossRefGoogle Scholar
  7. 7.
    Becker AL, Henzler K, Welsch N et al (2012) Proteins and polyelectrolytes: a charged relationship. Curr Opin Colloid Interface Sci 17:90–96CrossRefGoogle Scholar
  8. 8.
    Bertrand P, Jonas A (2000) Ultrathin polymer coatings by complexation of polyelectrolytes at interfaces: suitable materials, structure and properties. Macromol Rapid Commun 21:319–348CrossRefGoogle Scholar
  9. 9.
    Buboltz JT, Feigenson GW (1999) A novel strategy for the preparation of liposomes: rapid solvent exchange. Biochim Biophys Acta 1417:232–245CrossRefPubMedGoogle Scholar
  10. 10.
    Calvo P, Remunan-Lopez C (1997) Novel hydrophilic chitosan-polyethylene oxide nanoparticles as protein carriers. J Appl Polym Chem 63:125–132CrossRefGoogle Scholar
  11. 11.
    Carrillo J-MY, Dobrynin AV (2011) Polyelectrolytes in salt solutions. Mol Dyn Simul Macromol 44(14):5798–5816Google Scholar
  12. 12.
    Cevc G (1996) Lipid suspensions on the skin. Permeation enhancement, vesicle penetration and transdermal drug delivery. Crit Rev Ther Drug Carrier Syst 13:257–388CrossRefPubMedGoogle Scholar
  13. 13.
    Chenga R, Menga F, Denga C et al (2013) Dual and multi-stimuli responsive polymeric nanoparticles for programmed site-specific drug delivery. Biomaterials 34(14):3647–3657CrossRefGoogle Scholar
  14. 14.
    Chang Hsin-I, Yeh Ming-Kung (2012) Clinical development of liposome-based drugs: formulation, characterization, and therapeutic efficacy. Int J Nanomedicine 7:49–60Google Scholar
  15. 15.
    Chu CJ, Szoka FC (1994) pH sensitive liposomes. J Liposome Res 4(1):361–395CrossRefGoogle Scholar
  16. 16.
    Connor J, Yatvin MB, Huang L (1984) pH sensitive liposomes: acid-induced liposome fusion. Proc Natl Acad Sci U S A 81:1715–1718CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    D’ Emanuele A, Jevprasesphant R, Penny J et al (2004) The use of a dendrimer-propanolol prodrug to bypass efflux transporters and enclose oral bioavailability. J Control Release 95:447–453CrossRefGoogle Scholar
  18. 18.
    D’ Emanuele A, Attwood D (2005) Dendrimer-drug interactions. Adv Drug Deliv Rev 57(15):2147–2162CrossRefGoogle Scholar
  19. 19.
    D’ Souza GGM, Boddapati SV, Weissig V (2006) Nanoparticulate carriers for drug and DNA delivery to mammalian mitochondria. Pharmakeftiki 19:110–121Google Scholar
  20. 20.
    Jhaveri A, Deshpande P, Torchilin V (2014) Stimuli-sensitive nanopreparations for combination cancer therapy. J Control Release 190:352–370CrossRefPubMedGoogle Scholar
  21. 21.
    Fait JP, Mecozzi S (2008) Nanoemulsions for intravenous drug delivery. In: de Villiers MM, Aramwit P, Known GS (eds) Nanotechnology in drug delivery, vol X. Springer, AAPS Press, New York, pp 461–489Google Scholar
  22. 22.
    Felice B, Prabhakaran MP, Rodríguez AP, Ramakrishna S (2014) Drug delivery vehicles on a nano-engineering perspective. Mater Sci Eng C Mater Biol Appl 41:178–195CrossRefPubMedGoogle Scholar
  23. 23.
    Frechet JMJ (1994) Functional polymers and dendrimers-reactivity, molecular architecture and interfacial energy. Science 263:1710–1715CrossRefPubMedGoogle Scholar
  24. 24.
    Gardikis K, Micha-Screttas M, Demetzos C, Steele BR (2012) Dendrimers and the development of new complex nanomaterials for biomedical applications. Curr Med Chem 19:4913–4928CrossRefPubMedGoogle Scholar
  25. 25.
    Gregoriadis G, Ryman BE (1972) Fate of protein-containing liposomes injected into rats an approach to the treatment of storage disease. Eur J Biochem 24:485–491CrossRefPubMedGoogle Scholar
  26. 26.
    Gregoriadis G, Ryman BE (1972) Lysosomal localization of β-fructofuranosidase-containing liposomes injected into rats. Biochem J 129:123–133CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Gregoriadis G, Buckland RA (1973) Enzyme-containing liposomes alleviate a model for storage disease. Nature (London) 2:170–172CrossRefGoogle Scholar
  28. 28.
    Gregoriadis G, Willis EJ, Swan CP (1974) Drug-carrier potential of liposomes in cancer chemotherapy. Lancet 1:1313–1316CrossRefPubMedGoogle Scholar
  29. 29.
    Gregoriadis G (ed) (1988) Liposomes as drug carriers. Wiley, LondonGoogle Scholar
  30. 30.
    Hartig SM, Greene RR, DasGupta J et al (2007) Multifunctional nanoparticulate polyelectrolyte complexes. Pharm Res 24:2353–2369CrossRefPubMedGoogle Scholar
  31. 31.
    Hauser H, Gains N, Mueller M (1983) Vesiculation of unsonicated phospholipid dispersions containing phosphatidic acid by pH adjustment: physicochemical properties of the resulting unilamellar vesicles. Biochemistry 22:4775–4781CrossRefPubMedGoogle Scholar
  32. 32.
    Hawker CJ, Lee R, Frechet JMJ (1991) One-step synthesis of hyperbranched dendritic polyesters. J Am Soc 113:4583–4588CrossRefGoogle Scholar
  33. 33.
    Hong K, Kiprotin DB, Park GW et al (1999) Anti-her 2 immunoliposomes for targeted drug delivery. Ann N Y Acad Sci 886:293–296CrossRefPubMedGoogle Scholar
  34. 34.
    Ihre HR, de Jesus PLO, Szoka FC (2002) Polyester dendritic systems for drug delivery applications: design, synthesis and characterization. Bioconjug Chem 13:443–452CrossRefPubMedGoogle Scholar
  35. 35.
    Jenkins AD, Kratochvil P, Stepto RFT et al (1996) Glossary of basic terms in polymer science (IUPAC Recommendations 1996). Pure Appl Chem 68(12):2287–2311CrossRefGoogle Scholar
  36. 36.
    Kitchens KM, Ghandehari (2009) PAMAM dendrimers as nanoscale oral drug delivery systems. In: de Villiers MM, Aramwit P, Kwon GS (eds) Nanotechnology in drug delivery, vol X. Springer, AAPS Press, New York, pp 421–460Google Scholar
  37. 37.
    Kono K, Murakami T, Yoshida T, Haba Y et al (2005) Temperature sensitization of liposomes by use of thermosensitive block copolymers synthesized by living cationic polymerization: effect of copolymer chain length. Bioconjug Chem 16:1367–1374CrossRefPubMedGoogle Scholar
  38. 38.
    Kyrikou I, Daliani I, Mavromoustakos T et al (2004) The modulation of thermal and dynamic properties of vinblastine by cholesterol in membrane bilayer. Biochim Biophys Acta Biomembr 1661(1):1–8CrossRefGoogle Scholar
  39. 39.
    Lasic DD (1993) Liposomes: from physics to applications. Elsevier Publishing Company, AmsterdamGoogle Scholar
  40. 40.
    Lasic DD, Barenholz Y (eds) (1996) Non-medical applications of liposomes. Press CRC, Boca RatonGoogle Scholar
  41. 41.
    Lasic DD, Papahadjopoulos D (1995) Liposomes revisited. Science 267:1275–1276CrossRefPubMedGoogle Scholar
  42. 42.
    Lasic DD, Papahadjopoulos D (eds) (1998) Medical applications of liposomes. Elsevier, AmsterdamGoogle Scholar
  43. 43.
    Lee Y, Kataoka K (2009) Biosignal-sensitive polyion complex micelles for the delivery of biopharmaceuticals. Soft Matter 5:3810–3817CrossRefGoogle Scholar
  44. 44.
    Levacheva I, Samsonova O, Tazina E et al (2014) Optimized thermosensitive liposomes for selective doxorubicin delivery: formulation development, quality analysis and bioactivity proof. Colloids Surf B Biointerfaces 121:248–256CrossRefPubMedGoogle Scholar
  45. 45.
    Li S, Huang L (1999) Functional pleomorphism of liposomal gene delivery vectors. Lipoplex and lipopolyplex. In: Janoff AS (ed) Liposomes rational design. Markel Dekker, New YorkGoogle Scholar
  46. 46.
    Liu X, Huang G (2013) Formation strategies, mechanism of intracellular delivery and potential clinical applications of pH-sensitive liposomes. Asian J Pharm Sci 8:319–328CrossRefGoogle Scholar
  47. 47.
    Liu J, Huang Y, Kumar A et al (2014) pH-sensitive nano-systems for drug delivery in cancer therapy. Biotechnol Adv 32:693–710CrossRefPubMedGoogle Scholar
  48. 48.
    Mabrook E, Cuvelier D, Brochard-Wyrat F et al (2012) Polymersomes in polymersomes: multiple loading and permeability control. Angew Chem Int Ed Engl 28:11215–11224Google Scholar
  49. 49.
    Marquez-Beltran C, Castaned L, Enciso-Aguilar et al (2013) Structure and mechanism formation of polyelectrolyte complex obtained from PSS/PAH system: effect of molar mixing ratio, base-acid conditions and ionic strength. Collied Polym Sci 291(3):683–690CrossRefGoogle Scholar
  50. 50.
    Massignani M, Lomas H, Battaglia C (2010) Polymersomes: a synthetic biological approach to encapsulation and delivery. In: Caruso F (ed) Modern techniques for nano- and microreactors/-reactions advances in polymer sciences, vol 229. Springer, Berlin, p 115CrossRefGoogle Scholar
  51. 51.
    Matsingou C, Demetzos C (2007) The perturbing effect of cholesterol on the interactions between labdanes and DPPC bilayers. Thermochem Acta 452(2):116–123CrossRefGoogle Scholar
  52. 52.
    Matsingou C, Demetzos C (2007) Calorimetric study on the induction of interdigitated phase in hydrated DPPC lipid bilayers by bioactive labdanes and correlation to their liposomal stability. The role of chemical structure. CPL 145(1):45–62Google Scholar
  53. 53.
    Matsingou C, Demetzos C (2007) Effect of the nature of the 3b-substitution in manoyl oxides on the thermotropic behavior of DPPC lipid bilayers and on DPPC liposomes. J Liposome Res 17(2):89–105CrossRefPubMedGoogle Scholar
  54. 54.
    Mauro F (2005) Cancer nanotechnology: opportunities and challenges. Nat Rev Cancer 5:161–171CrossRefGoogle Scholar
  55. 55.
    Moya-Ortega MD, Alvarez- Lorenzo C, Concheiro A (2012) Cyclodextrin-based nanogels for pharmaceutical and biomedical applications. Int J Pharm 428(1):152–163CrossRefPubMedGoogle Scholar
  56. 56.
    Mozafari MR (2005) Liposomes: an overview of manufacturing techniques. Cell Mol Biol Lett 10(4):711–719PubMedGoogle Scholar
  57. 57.
    Mourelatou E, Spyratou E, Georgopoulos A et al (2010) Development and characterization of oligonucleotide-tagged dye-encapsulating EPC/DPPG liposomes. J Nanosci Nanotechnol 10:1–9CrossRefGoogle Scholar
  58. 58.
    Muller RH, Mader K, Gohla S (2000) Solid Lipid nanoparticles (SLN) for controlled drug delivery – review of the state of the art. Eur J Pharm Biopharm 50(1):161–177CrossRefPubMedGoogle Scholar
  59. 59.
    Nallani M, Andreasson-Ochsner M, Tan CV et al (2011) Proteopolymersomes: in vitro production of a membrane protein in polymersomes membrane. Biointerfaces 6(4):153–157Google Scholar
  60. 60.
    New RCC (1990) Liposomes a practical approach. IRL, Oxford University Press, OxfordGoogle Scholar
  61. 61.
    Newkome GR, Yao Z, Baker GR (1985) Cascade molecules: a new approach to micelles. A[27]-arborol. J Org Chem 50(11):2003–2004CrossRefGoogle Scholar
  62. 62.
    Omri A, Agnew BJ, Patel GB (2000) Short term repeated dose toxicity profile of archaeosomes administered to mice via intravenous and oral routes. J Liposome Res 10:523–538CrossRefGoogle Scholar
  63. 63.
    Papahadjopoulos D, Witkins JC (1967) Phospholipid model membranes II. Permeability properties of hydrated liquid crystals. Biochim Biophys Acta 135:639–652CrossRefPubMedGoogle Scholar
  64. 64.
    Papahadjopoulos D, Vail WJ, Jacobson K et al (1975) Cochleate lipid cylinders: formation by fusion of unilamellar lipid vesicles. Biochim Biophys Acta 394(3):483–491CrossRefPubMedGoogle Scholar
  65. 65.
    Papahadjopoulos D (ed) (1978) Liposomes and their use in biology and medicine. Ann N Y Acad Sci 408:1–412Google Scholar
  66. 66.
    Perrie Y, Obrenouin M, McCarthy D et al (2002) Liposomes (lipodine) – mediated DNA vaccination by the oral route. J Liposome Res 12(1–2):185–197CrossRefPubMedGoogle Scholar
  67. 67.
    Photos PJ, Bacakova L, Discher B et al (2003) Polymer vesicles in vivo: correlations with PEG molecular weight. J Control Release 90:323–334CrossRefPubMedGoogle Scholar
  68. 68.
    Pick U (1981) Liposomes with a large trapping capacity prepared by freezing and thawing of sonicated phospholipid mixtures. Arch Biochem Biophys 212:186–194CrossRefPubMedGoogle Scholar
  69. 69.
    Pippa N, Karayianni M, Pispas S, Demetzos C (2015) Complexation of cationic-neutral block polyelectrolyte with insulin and in vitro release studies. Int J Pharm 491(1–2):126–143Google Scholar
  70. 70.
    Pispas S (2011) Self-assembled nanostructures in mixed anionic-neutral double hydrophilic block co-polymer/cationic vesicle-forming surfactant solutions. Soft Matter 7:474–482CrossRefGoogle Scholar
  71. 71.
    Ruysschaert AFP, Sonne T, Haefele T et al (2005) Hybrid nanocapsules: interactions of ABA block copolymers with liposomes. J Am Chem Soc 127:6242–6247CrossRefPubMedGoogle Scholar
  72. 72.
    Schieren H, Rudolph S, Finkelstein M et al (1978) Comparison of large unilamellar vesicles prepared by petroleum ether vaporization method with multilamellar vesicles: ESR, diffusion and entrapment analyses. Biochim Biophys Acta 542:137–153CrossRefPubMedGoogle Scholar
  73. 73.
    Sidone B, Zamboni A, Zamboni W (2011) Meta analysis of the pharmacokinetic variability of liposomal anticancer agents compared with non liposomal anticancer agents. In: Abstracts of 2011 ASCO Annual Meeting. J Clin Oncol 29:2011 (suppl, abstract 2583)Google Scholar
  74. 74.
    Simões S, Moreira J-N, Fonseca C et al (2004) On the formulation of pH-sensitive liposomes with long circulation times. Adv Drug Deliv Rev 56:947–965CrossRefPubMedGoogle Scholar
  75. 75.
    Slingerland M, Guckelaar HJ, Gelderblom H (2012) Liposomal drug formulations in cancer therapy: 15 years along the road. Drug Discov Today 17:160–166CrossRefPubMedGoogle Scholar
  76. 76.
    Szoka FJ, Papahadjopoulos D (1980) Comparative properties and methods of preparation of lipid vesicles (liposomes). Annu Rev Biophys Bioeng 9:467–508CrossRefPubMedGoogle Scholar
  77. 77.
    Ta T, Porter TM (2013) Thermosensitive liposomes for localized delivery and triggered release of chemotherapy. J Control Release 169(1–2):112–125CrossRefPubMedGoogle Scholar
  78. 78.
    Taubert A, Napoli A, Meier W (2004) Self-assembly of reactive amphiphilic block copolymers as mimetics for biological membranes. Curr Opin Chem Biol 8(6):598–603CrossRefPubMedGoogle Scholar
  79. 79.
    Tibaldi JM (2012) Evolution of insulin development: focus on key parameters. Adv Ther 29:590–619CrossRefPubMedGoogle Scholar
  80. 80.
    Tomalia DA, Baker H, Dewald J et al (1985) A new class of polymers: starburst-dendritic macromolecules. Polym J 17:117–132CrossRefGoogle Scholar
  81. 81.
    Tomalia DA (1994) Starburst/cascade dendrimers: fundamental building blocks for a mew macroscopic chemistry set. Adv Mater 6:529–539CrossRefGoogle Scholar
  82. 82.
    Tomalia DA (2006) Dendrons/dendrimers quantized nano-element like building blocks for soft-soft and soft-hard nano-compound synthesis. Soft Matter 2:478–498CrossRefGoogle Scholar
  83. 83.
    Tomalia DA (2009) In quest of a systematic framework for unifying and defining nanoscience. J Nanopart Res 11:1251–1310CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Tompson KL, Chambon P, Versber R (2012) Can polymersomes form colloidosomes? J Am Chem Soc 134(30):12450–12453CrossRefGoogle Scholar
  85. 85.
    Torchillin V, Trubetskoy VS (1995) In vivo visualizing of organs and tissues with liposomes. J Liposome Res 5:795–812CrossRefGoogle Scholar
  86. 86.
    Torchilin VP (2004) Targeted polymeric micelles for delivery of poorly soluble drugs. Cell Mol Life Sci 61(19–20):2549–2559CrossRefPubMedGoogle Scholar
  87. 87.
    Villalonga-Barber C, Micha-Skretta M, Steele BR, Geaorgopoulos A, Demetzos C (2008) Dendrimers as biopharmaceuticals: synthesis and properties. Topics Med Chem 8(4):1294–1309CrossRefGoogle Scholar
  88. 88.
    Weiner N, Lieb L (1998) Developing uses of topical liposomes: delivery of biologically active macromolecules. In: Lasic D, Papahadjopoulos D (eds) Medical applications of liposomes. Elsevier, AmsterdamGoogle Scholar
  89. 89.
    Wooley KL, Hawker CJ, Frechet JMJ (1991) Hyperbranched macromolecules via a novel double-stage convergent growth approach. J Am Chem Soc 113:4252CrossRefGoogle Scholar
  90. 90.
    Xu K (2009) Stepwise oscillatory circuits of DNA molecule. J Biol Phys 35:223–230CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Zhang H, Gong W, Wang ZY et al (2014) Preparation, characterization, and pharmacodynamics of thermosensitive liposomes containing docetaxel. J Pharm Sci 103(7):2177–2183CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Singapore 2016

Authors and Affiliations

  • Costas Demetzos
    • 1
  1. 1.Faculty of PharmacyNational & Kapodistrian University of AthensZografouGreece

Personalised recommendations