Application of Nanotechnology in Imaging and Diagnostics

  • Costas Demetzos


The technological evolution and the knowledge gained to provide useful tools to the scientific community to develop molecular tools for toxic substance detection in everyday life and accurate determination of biomolecules (e.g., proteins) that can lead to diseases. Diagnosis at the molecular level was introduced to the clinical application to investigate diseases and to monitor their progress. The term nanotechnology on a chip refers to the application of molecular diagnosis in a variety of methods. The most accurate approaches that have been introduced to diagnostics and imaging are nanochips and nanoarrays. These approaches are sensitive and have greater speed that already exist in clinical applications. The term theranostics refers to the integration of the diagnosis/imaging and therapy approached. Nanotheranostics combine the simultaneous noninvasive diagnosis and treatment of diseases with the exciting possibility to monitor in real time drug release from the nanocarrier and distribution, thus predicting and validating the effectiveness of the therapy. Due to these features, nanotheranostics are extremely attractive for optimizing treatment outcomes in cancer and cardiovascular and other severe diseases.


Diagnostics Imaging Nanotheranostics Biosensors Microelectromechanical systems (MEMS) Nanobiotechnology 


  1. 1.
    Akerman MA, Chan WCW, Laakkonenet et al (2002) Nanocrystals targeting in vivo. PNAS 99(20):12617–12621CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Barton J, Halas NJ, Nest J et al (2004) Nanoshells as OCT contrast agent. Proc SPIE Int Soc Opt Eng 5316:99Google Scholar
  3. 3.
    Freitas RA Jr (2005) What is nanomedicine? Nanomedicine 1:2–9PubMedGoogle Scholar
  4. 4.
    Hirsch LR, Gobin AM, Lowery AR et al (2006) Metal nanoshells. Ann Biomed Eng 34(1):15–22CrossRefPubMedGoogle Scholar
  5. 5.
    Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58CrossRefGoogle Scholar
  6. 6.
    Iijima S, Ichihashi T (1993) Single-shell carbon nanotubes of 1-nm diameter. Nature 363:603–605CrossRefGoogle Scholar
  7. 7.
    Kewal KJ (2008) The handbook of nanomedicine. Humana Press, Basel, pp 36–37Google Scholar
  8. 8.
    Kostarelos K (2010) Carbon nanotubes. Fibrillar Pharmacol Nat Mater 9(10):793–795CrossRefGoogle Scholar
  9. 9.
    Loo C, Lowezy A, Halas N et al (2005) Immunotargeted nanoshells for integrated cancer imaging and therapy. Nano Lett 5:709–711CrossRefPubMedGoogle Scholar
  10. 10.
    Mura S, Couvreur P (2012) Nanotheranostics for personalized medicine. Adv Drug Deliv Rev 64:1394–1416CrossRefPubMedGoogle Scholar
  11. 11.
    Murday JS, Siege RW, Stein J et al (2009) Translational nanomedicine: status assessment and opportunities. Nanomedicine 5:251–273PubMedGoogle Scholar
  12. 12.
    Pagona G, Tagmatarchis N (2006) Carbon nanotubes: materials for medicinal chemistry and biotechnological applications. Curr Med Chem 13(15):1789–1798CrossRefPubMedGoogle Scholar
  13. 13.
    Rudin M, Weissleder M (2003) Molecular imaging in drug discovery and development. Nat Rev Drug Discov 2:123–131CrossRefPubMedGoogle Scholar
  14. 14.
    Ryu JH, Koo H, Sun IC et al (2012) Tumor-targeting multi-functional nanoparticles for theragnosis: new paradigm for cancer therapy. Adv Drug Deliv Rev 64:1447–1458CrossRefPubMedGoogle Scholar
  15. 15.
    Steinhart M, Wendorff JH, Wehrspohn RB (2003) Nanotubes à la carte: wetting of porous templates. ChemPhysChem 4:1171–1176CrossRefPubMedGoogle Scholar
  16. 16.
    Stroch M, Zimmer JP, Duda DG et al (2005) Quantum dots spectrally distinguish multiple species within the tumor milieu in vivo. Nat Med 11:678–682CrossRefGoogle Scholar
  17. 17.
    Shruthi GS, Amitha CV, Mathew BB (2014) Biosensors: a modern day achievement. J Instrum Technol 2(1):26–39Google Scholar
  18. 18.
    Thevenot DR, Toth K, Durst R et al (1999) Electrochemical biosensors: recommended definitions and classification. Pure Appl Chem 16(1–2):121–131Google Scholar
  19. 19.
    Voura EB, Jaiswal JK, Mattoussi H et al (2004) Tracking metastatic tumor cell extravasation with quantum dot nanocrystals and fluorescence emission-scanning microscopy. Nat Med 10:993–998CrossRefPubMedGoogle Scholar
  20. 20.
    Wagner V, Dullaart A, Bock AK, Zweck A (2006) The emerging nanomedicine landscape. Nat Biotechnol 24:1211–1217CrossRefPubMedGoogle Scholar
  21. 21.
    Zang Z, Wang J, Chen C (2013) Gold nanorods based platforms for light-mediated theranostics. Theranostics 3(3):223–238CrossRefGoogle Scholar
  22. 22.
    Zuckermans ST, Kao WJ (2009) Nanomaterials and biocompatibility: BIOMES and Dendrimers. In: de Villiers MM, Aramwit P, Known GS (eds) Nanotechnology in drug delivery, vol 10. Springer/AAPS press, New York, pp 193–228CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Singapore 2016

Authors and Affiliations

  • Costas Demetzos
    • 1
  1. 1.Faculty of PharmacyNational & Kapodistrian University of AthensZografouGreece

Personalised recommendations