Advertisement

Potential Future Coral Habitats Around Japan Depend Strongly on Anthropogenic CO2 Emissions

  • Yumiko Yara
  • Hiroya Yamano
  • Marco Steinacher
  • Masahiko Fujii
  • Meike Vogt
  • Nicolas Gruber
  • Yasuhiro Yamanaka
Part of the Ecological Research Monographs book series (ECOLOGICAL)

Abstract

Using the results from the NCAR CSM1.4-coupled global carbon cycle–climate model under the Intergovernmental Panel on Climate Change (IPCC) emission scenarios SRES A2 and B1, we estimated the effects of both global warming and ocean acidification on the future habitats of corals in the seas around Japan during this century. As shown by Yara et al. (Biogeosciences 9:4955–4968, 2012), under the high-CO2-emission scenario (SRES A2), coral habitats will be sandwiched and narrowed between the northern region, where the saturation state of the carbonate mineral aragonite (Ωarag) decreases, and the southern region, where coral bleaching occurs. We found that under the low-emission scenario SRES B1, the coral habitats will also shrink in the northern region by the reduced Ωarag but to a lesser extent than under SRES A2, and in contrast to SRES A2, no bleaching will occur in the southern region. Therefore, coral habitats in the southern region are expected to be largely unaffected by ocean acidification or surface warming under the low-emission scenario. Our results show that potential future coral habitats depend strongly on CO2 emissions and emphasize the importance of reducing CO2 emissions to prevent negative impacts on coral habitats.

Keywords

CO2 emission scenarios Climate change Global warming Ocean acidification Coral Japan 

Notes

Acknowledgments

We thank D. Loher for providing the interpolated GLODAP/observational fields. Y. Yara and H. Y. acknowledge funding by the Strategic Research and Development Project (S-9) of the Ministry of the Environment, Japan. H. Y., M. F., and Y. Yamanaka acknowledge support under the auspices of the “Precise Impact Assessments on Climate Change” of the Program for Risk Information on Climate Change (SOUSEI Program) supported by the Ministry of Education, Culture, Sports, Science, and Technology of Japan (MEXT). M. S. acknowledges the support of the Swiss National Science Foundation and the “European Project on Ocean Acidification,” EPOCA (211384), and the European Project CARBOCHANGE (264879), which both receive funding from the European Commission’s Seventh Framework Programme (FP7/20072013). M. V. and N. G. acknowledge funding from ETH Zurich.

References

  1. Albright R, Mason B, Miller M, Langdon C (2010) Ocean acidification compromises recruitment success of the threatened Caribbean coral Acropora palmata. Proc Natl Acad Sci U S A 107:20400–20404CrossRefPubMedPubMedCentralGoogle Scholar
  2. Anthony KRN, Kline DI, Diaz-Pulido G, Dove S, Hoegh-Guldberg O (2008) Ocean acidification causes bleaching and productivity loss in coral reef builders. Proc Natl Acad Sci U S A 105:17442–17446CrossRefPubMedPubMedCentralGoogle Scholar
  3. Anthony KRN, Maynard JA, Diaz-Pulido G, Mumby PJ, Marshall PA, Cao L, Hoegh-Guldberg O (2011) Ocean acidification and warming will lower coral reef resilience. Glob Chang Biol 17:1798–1808CrossRefPubMedCentralGoogle Scholar
  4. Bopp L, Resplandy L, Orr JC, Doney SC, Dunne JP, Gehlen M, Halloran P, Heinze C, Ilyina T, Séférian R, Tjiputra J, Vichi M (2013) Multiple stressors of ocean ecosystems in the 21st century: projections with CMIP5 models. Biogeosciences 10:6225–6245CrossRefGoogle Scholar
  5. Cohen AL, Holcomb M (2009) Why corals care about ocean acidification: uncovering the mechanism. Oceanography 22:118–127CrossRefGoogle Scholar
  6. Couce EA, Ridgwell A, Henry EJ (2013) Future habitat suitability for coral reef ecosystems under global warming and ocean acidification. Glob Chang Biol 19:3592–3606CrossRefPubMedPubMedCentralGoogle Scholar
  7. Doney S, Lindsay K, Fung I, John J (2006) Natural variability in a stable, 1000-year global coupled climate-carbon cycle simulation. J Climate 19:3033–3054CrossRefGoogle Scholar
  8. Fabricius KE, Langdon C, Uthicke S, Humphrey C, Noonan S, De’ath G, Okazaki R, Muehllehner N, Glas MS, Lough JM (2011) Losers and winners in coral reefs acclimatized to elevated carbon dioxide concentrations. Nat Clim Chang 1:165–169CrossRefGoogle Scholar
  9. Feely RA, Sabine CL, Lee K, Berelson W, Kleypas J, Fabry VJ, Millero FJ (2004) Impact of anthropogenic CO2 on the CaCO3 system in the oceans. Science 305:362–366CrossRefPubMedGoogle Scholar
  10. Feely RA, Doney SC, Cooley SR (2009) Ocean acidification: present conditions and future changes in a high-CO2 world. Oceanography 22:36–47CrossRefGoogle Scholar
  11. Frieler K, Meinshausen M, Golly A, Mengel M, Lebek K, Donner SD, Hoegh-Guldberg O (2013) Limiting global warming to 2°C is unlikely to save most coral reefs. Nat Clim Chang 3:165–170CrossRefGoogle Scholar
  12. Fung I, Doney S, Lindsay K, John J (2005) Evolution of carbon sinks in a changing climate. Proc Natl Acad Sci U S A 102:11201–11206CrossRefPubMedPubMedCentralGoogle Scholar
  13. Gattuso J-P, Frankignoulle M, Bourge I, Romaine S, Buddemeier RW (1998) Effect of calcium carbonate saturation of seawater on coral calcification. Glob Planet Chang 18:37–46CrossRefGoogle Scholar
  14. Gattuso J-P, Magnan A, Billé R, Cheung WWL, Howes EL, Joos F, Allemand D, Bopp L, Cooley SR, Eakin CM, Hoegh-Guldberg O, Kelly RP, Pörtner H-O, Rogers AD, Baxter JM, Laffoley D, Osborn D, Rankovic A, Rochette J, Sumaila UR, Treyer S, Turley C (2015) Contrasting futures for ocean and society from different anthropogenic CO2 emissions scenarios. Science 349:aac4722CrossRefPubMedGoogle Scholar
  15. Gruber N (2011) Warming up, turning sour, losing breath: ocean biogeochemistry under global change. Phil Trans R Soc Lond A 369:1980–1996CrossRefGoogle Scholar
  16. Gruber N, Hauri C, Lachkar Z, Loher D, Frölicher TL, Plattner G-K (2012) Rapid progression of ocean acidification in the California current system. Science 337:220–223CrossRefPubMedGoogle Scholar
  17. Guinotte JM, Buddemeier RW, Kleypas JA (2003) Future coral reef habitat marginality: temporal and spatial effects of climate change in the Pacific basin. Coral Reefs 22:551–558CrossRefGoogle Scholar
  18. Hoegh-Guldberg O (2005) Low coral cover in a high-CO2 world. J Geophys Res 110:C09S06CrossRefGoogle Scholar
  19. Hoegh-Guldberg O, Mumby PJ, Hooten AJ, Steneck RS, Greenfield P, Gomez E, Harvell CD, Sale PF, Edwards AJ, Caldeira K, Knowlton N, Eakin CM, Iglesias-Prieto R, Muthiga N, Bradbury RH, Dubi A, Hatziolos ME (2007) Coral reefs under rapid climate change and ocean acidification. Science 318:1737–1742CrossRefPubMedGoogle Scholar
  20. Honma Y, Kitami T (1978) Fauna and flora in the waters adjacent to the Sado Marine Biological Station, Niigata University. Ann Rep Sado Mar Biol Stat Niigata Univ 8:7–81Google Scholar
  21. Hori N (1980) Coral reefs in Japan. Kagaku 50:111–122 (in Japanese)Google Scholar
  22. Ikeda E, Iryu Y, Sugihara K, Ohba H, Yamada T (2006) Bathymetry, biota, and sediments on the Hirota reef, Tane-ga-shima; the northernmost coral reef in the Ryukyu Islands. Island Arc 15:407–419CrossRefGoogle Scholar
  23. Inoue S, Kayanne H, Yamamoto S, Kurihara H (2013) Spatial community shift from hard to soft corals in acidified water. Nat Clim Chang 3:683–687CrossRefGoogle Scholar
  24. Kan H, Nakashima Y, Ohashi T, Hamanaka N, Okamoto T, Nakai T, Hori N (2005) Drilling Research of a high-latitude coral reef in Mage Island, Satsunan Islands, Japan. Okayama Univ Earth Sci Rep 12:49–58 (in Japanese with English abstract)Google Scholar
  25. Kayanne H, Harii S, Yamano H, Tamura M, Ide Y, Akimoto F (1999) Changes in living coral coverage before and after the 1998 bleaching event on coral reef flats of Ishigaki Island, Ryukyu Islands. Galaxea JCRS 1:73–82 (in Japanese with English abstract)CrossRefGoogle Scholar
  26. Kleypas JA, McManus JW, Meñez LAB (1999a) Environmental limits to coral reef development: where do we draw the line? Am Zool 39:146–159CrossRefGoogle Scholar
  27. Kleypas JA, Buddemeier RW, Archer D, Gattuso J-P, Langdon C, Opdyke BN (1999b) Geochemical consequences of increased atmospheric carbon dioxide on coral reefs. Science 284:118–120CrossRefPubMedGoogle Scholar
  28. Kleypas JA, Feely RA, Fabry VJ, Langdon C, Sabine CL, Robbins LL (2006) Impacts of ocean acidification on coral reefs and other marine calcifiers: a guide for future research, report of a workshop held 18–20 Apr 2005, St. Petersburg, sponsored by NSF, NOAA, and the U.S. Geological Survey, 88 ppGoogle Scholar
  29. Langdon C, Takahashi T, Sweeney C, Chipman D, Goddard J, Marubini F, Aceves H, Barnett H, Atkinson MJ (2000) Effect of calcium carbonate saturation state on the calcification rate of an experimental coral reef. Glob Biogeochem Cycles 14:639–654CrossRefGoogle Scholar
  30. Langdon C, Broecker WS, Hammond DE, Glenn E, Fitzsimmons K, Nelson SG, Peng T-H, Hajdas I, Bonani G (2003) Effect of elevated CO2 on the community metabolism of an experimental coral reef. Glob Biogeochem Cycles 17:1011CrossRefGoogle Scholar
  31. Manzello DP (2010) Coral growth with thermal stress and ocean acidification: lessons from the eastern tropical Pacific. Coral Reefs 29:749–758CrossRefGoogle Scholar
  32. Meissner KJ, Lippmann T, Sen Gupta A (2012) Large-scale stress factors affecting coral reefs: open ocean sea surface temperature and surface seawater aragonite saturation over the next 400 years. Coral Reefs 31:309–319CrossRefGoogle Scholar
  33. Morita M, Suwa R, Iguchi A, Nakamura M, Shimada K, Sakai K, Suzuki A (2009) Ocean acidification reduces sperm flagellar motility in broadcast spawning reef invertebrate. Zygote 18:103–107CrossRefGoogle Scholar
  34. Orr JC, Fabry VJ, Aumont O, Bopp L, Doney SC, Feely RA, Gnanadesikan A, Gruber N, Ishida A, Joss F, Key RM, Lindsay K, Maier-Reimer E, Matear R, Monfray P, Mouchet A, Najjar RG, Plattner GK, Rodgers KB, Sabine CL, Sarmiento JL, Schlitzer R, Slater RD, Totterdell IJ, Weirig MF, Yamanaka Y, Yool A (2005) Anthropogenic ocean acidification over the twenty first century and its impact on calcifying organisms. Nature 437:681–686CrossRefPubMedGoogle Scholar
  35. Pandolfi JM, Connolly SR, Marshall DJ, Cohen AL (2011) Projecting coral reef futures under global warming and ocean acidification. Science 333:418–422CrossRefPubMedGoogle Scholar
  36. Precht WF, Aronson RB (2004) Climate flickers and range shifts of reef corals. Front Ecol Environ 2:307–314CrossRefGoogle Scholar
  37. Riegl B, Piller WE (2003) Possible refugia for reefs in times of environmental stress. Coral Reefs 92:520–531Google Scholar
  38. Rodgers KB, Aumont O, Menkes C, Gorgues T (2008) Decadal variations in equatorial Pacific ecosystems and ferrocline/pycnocline decoupling. Glob Biogeochem Cycles 22, GB2019Google Scholar
  39. Steinacher M, Joos F, Frölicher TL, Plattner G-K, Doney SC (2009) Imminent ocean acidification in the Arctic projected with the NCAR global coupled carbon cycle-climate model. Biogeosciences 6:515–533CrossRefGoogle Scholar
  40. Steinacher M, Joos F, Stocker TF (2013) Allowable carbon emissions lowered by multiple climate targets. Nature 499:197–201CrossRefPubMedGoogle Scholar
  41. Trenberth KE, Jones PD, Ambenje P, Bojariu R, Easterling D, Klein Tank A, Parker D, Rahimzadeh F, Renwick JA, Rusticucci M, Soden B, Zhai P (2007) Observations: surface and atmospheric climate change. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  42. van Hooidonk R, Maynard JA, Planes S (2013) Temporary refugia for coral reefs in a warming world. Nat Clim Chang 3:508–511CrossRefGoogle Scholar
  43. Veron JEN, Minchin PR (1992) Correlations between sea surface temperature, circulation patterns and the distribution of hermatypic corals of Japan. Cont Shelf Res 12:835–857Google Scholar
  44. Yamamoto-Kawai M, McLaughlin FA, Carmack EC, Nishino S, Shimada K (2009) Aragonite undersaturation in the Arctic Ocean: effects of ocean acidification and climate change. Science 326:1098–1100CrossRefPubMedGoogle Scholar
  45. Yamano H, Sugihara K, Nomura K (2011) Rapid poleward range expansion of tropical reef corals in response to rising sea surface temperatures. Geophys Res Lett 38, L04601CrossRefGoogle Scholar
  46. Yara Y, Vogt M, Fujii M, Yamano H, Hauri C, Steinacher M, Gruber N, Yamanaka Y (2012) Ocean acidification limits temperature-induced poleward expansion of coral habitats around Japan. Biogeosciences 9:4955–4968CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Singapore 2016

Authors and Affiliations

  • Yumiko Yara
    • 1
    • 2
  • Hiroya Yamano
    • 1
  • Marco Steinacher
    • 3
  • Masahiko Fujii
    • 4
  • Meike Vogt
    • 5
  • Nicolas Gruber
    • 5
  • Yasuhiro Yamanaka
    • 4
  1. 1.Center for Environmental Biology and Ecosystem StudiesNational Institute for Environmental StudiesTsukubaJapan
  2. 2.Project Team for Analyses of Changes in East Japan Marine Ecosystems, JAMSTECYokosukaJapan
  3. 3.Climate and Environmental Physics, Physics InstituteUniversity of BernBernSwitzerland
  4. 4.Faculty of Environmental Earth ScienceHokkaido UniversitySapporoJapan
  5. 5.Environmental Physics GroupInstitute of Biogeochemistry and Pollutant Dynamics, ETH ZurichZurichSwitzerland

Personalised recommendations