Skip to main content

Selective Hydrogenation of 1,3-Butadiene on Pd–Ni Bimetallic Catalyst: From Model Surfaces to Supported Catalysts

  • Chapter
  • First Online:
Catalytic and Process Study of the Selective Hydrogenation of Acetylene and 1,3-Butadiene

Part of the book series: Springer Theses ((Springer Theses))

Abstract

The industrial catalysts for selective hydrogenation are Pd-based precious metal catalysts. The addition of Ag in industrial catalyst could enhance the selectivity but significantly decreases the hydrogenation activity, which brings up the catalyst cost regarding the price per activity unit. Thus, it is important to find efficient and inexpensive catalyst for selective hydrogenation processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahn IY, Lee JH, Kim SK et al (2009) Three-stage deactivation of Pd/SiO2 and Pd–Ag/SiO2 catalysts during the selective hydrogenation of acetylene. Appl Catal A-Gen 360(1):38–42

    Article  CAS  Google Scholar 

  2. Zhang QW, Li J, Liu XX et al (2000) Synergetic effect of Pd and Ag dispersed on Al2O3 in the selective hydrogenation of acetylene. Appl Catal A-Gen 197(2):221–228

    Article  CAS  Google Scholar 

  3. Khan NA, Uhl A, Shaikhutdinov S et al (2006) Alumina supported model Pd–Ag catalysts: A combined STM, XPS. TPD and IRAS study. Surf Sci 600(9):1849–1853

    Article  CAS  Google Scholar 

  4. Khan NA, Shaikhutdinov S, Freund HJ (2006) Acetylene and ethylene hydrogenation on alumina supported Pd–Ag model catalysts. Catal Lett 108(3–4):159–164

    Article  CAS  Google Scholar 

  5. Sheth PA, Neurock M, Smith CM (2005) First-principles analysis of the effects of alloying Pd with Ag for the catalytic hydrogenation of acetylene-ethylene mixtures. J Phys Chem B 109(25):12449–12466

    Article  CAS  Google Scholar 

  6. Ma Y, Diemant T, Bansmann J et al (2011) The interaction of CO with PdAg/Pd(111) surface alloys-A case study of ensemble effects on a bimetallic surface. Phys Chem Chem Phys 13(22):10741–10754

    Article  CAS  Google Scholar 

  7. Gonzalez S, Neyman KM, Shaikhutdinov S et al (2007) On the promoting role of Ag in selective hydrogenation reactions over Pd–Ag bimetallic catalysts: a theoretical study. J Phys Chem C 111(18):6852–6856

    Article  CAS  Google Scholar 

  8. Mei D, Neurock M, Smith CM (2009) Hydrogenation of acetylene-ethylene mixtures over Pd and Pd–Ag alloys: first-principles-based kinetic Monte Carlo simulations. J Catal 268(2):181–195

    Article  CAS  Google Scholar 

  9. Pachulski A, Schodel R, Claus P (2011) Performance and regeneration studies of Pd–Ag/Al2O3 catalysts for the selective hydrogenation of acetylene. Appl Catal A-Gen 400(1–2):14–24

    Article  CAS  Google Scholar 

  10. Lu FF, Sun DH, Huang JL et al (2014) Plant-mediated synthesis of Ag-Pd alloy nanoparticles and their application as catalyst toward selective hydrogenation. ACS Sustain Chem Eng 2(5):1212–1218

    Article  CAS  Google Scholar 

  11. Wei HH, Yen CH, Lin HW et al (2013) Synthesis of bimetallic Pd–Ag colloids in CO2-expanded hexane and their application in partial hydrogenation of phenylacetylene. J Supercrit Fluids 81:1–6

    Article  CAS  Google Scholar 

  12. Redjala T, Remita H, Apostolescu G et al (2006) Bimetallic Au-Pd and Ag-Pd clusters synthesised by gamma or electron beam Radiolysis and study of the reactivity/structure relationships in the selective hydrogenation of buta-1,3-diene. Oil Gas Sci Technol 61(6):789–797

    Article  CAS  Google Scholar 

  13. Sarkany A (1997) Semi-hydrogenation of 1,3-butadiene over Pd–Ag/alpha–Al2O3 poisoned by hydrocarbonaceous deposits. App Catal A-Gen 165(1–2):87–101

    Article  CAS  Google Scholar 

  14. Sarkany A (1997) Self-poisoning and aging of Pd–Ag/Al2O3 in semi-hydrogenation of 1,3-butadiene: effects of surface inhomogeneity caused by hydrocarbonaceous deposits. In: Bartholomew CH, Fuentes GA (eds) Catalyst deactivation 1997, vol 111. Studies in Surface Science and Catalysis, pp 111–118

    Google Scholar 

  15. Zhang YY, Diao WJ, Williams CT et al (2014) Selective hydrogenation of acetylene in excess ethylene using Ag- and Au-Pd/SiO2 bimetallic catalysts prepared by electroless deposition. Appl Catal A-Gen 469:419–426

    Article  CAS  Google Scholar 

  16. Pei GX, Liu XY, Wang AQ et al (2014) Promotional effect of Pd single atoms on Au nanoparticles supported on silica for the selective hydrogenation of acetylene in excess ethylene. New J Chem 38(5):2043–2051

    Article  CAS  Google Scholar 

  17. Sarkany A, Horvath A, Beck A (2002) Hydrogenation of acetylene over low loaded Pd and Pd–Au/SiO2 catalysts. App Catal A-Gen 229(1–2):117–125

    Article  CAS  Google Scholar 

  18. Kittisakmontree P, Yoshida H, Fujita S et al (2015) The effect of TiO2 particle size on the characteristics of Au-Pd/TiO2 catalysts. Catal Comm 58:70–75

    Article  CAS  Google Scholar 

  19. Wang Z, Zhang K, Yang K et al (2014) Effect of alkali metal modification on selective hydrogenation of isoprene on Pd–Au/Al2O3 catalysts. PetroProcess Petrochem 45(12):38–42

    Google Scholar 

  20. Zhang K, Wang Z, Ze B et al (2014) Selective hydrogenation of isoprene on Pd–Au/Al2O3 catalysts modified with Bi. Petrochem Tech 43(2):132–137

    Google Scholar 

  21. El Kolli N, Delannoy L, Louis C (2013) Bimetallic Au-Pd catalysts for selective hydrogenation of butadiene: Influence of the preparation method on catalytic properties. J Catal 297:79–92

    Article  CAS  Google Scholar 

  22. Kittisakmontree P, Pongthawornsakun B, Yoshida H et al (2013) The liquid-phase hydrogenation of 1-heptyne over Pd–Au/TiO2 catalysts prepared by the combination of incipient wetness impregnation and deposition-precipitation. J Catal 297:155–164

    Article  CAS  Google Scholar 

  23. Pongthawornsakun B, Fujita SI, Arai M et al (2013) Mono- and bi-metallic Au-Pd/TiO2 catalysts synthesized by one-step flame spray pyrolysis for liquid-phase hydrogenation of 1-heptyne. Appl Catal A-Gen 467:132–141

    Article  CAS  Google Scholar 

  24. Piccolo L, Piednoir A, Bertolini JC (2005) Pd–Au single-crystal surfaces: segregation properties and catalytic activity in the selective hydrogenation of 1,3-butadiene. Surf Sci 592(1–3):169–181

    Article  CAS  Google Scholar 

  25. Miura H, Terasaka M, Oki K et al (1993) Preparation of eggshell type Pd–Ag and Pd–Au catalysts by selective deposition and hydrogenation of 1,3-butadiene. Stud Surf Sci Catal 75:2379–2382

    Article  CAS  Google Scholar 

  26. Wang ZQ, Zhou ZM, Zhang R et al (2014) Selective hydrogenation of phenylacetylene over Pd–Cu/γ–Al2O3 catalysts. Acta Phys-Chim Sin 30(12):2315–2322

    CAS  Google Scholar 

  27. McCue AJ, McRitchie CJ, Shepherd AM et al (2014) Cu/Al2O3 catalysts modified with Pd for selective acetylene hydrogenation. J Catal 319:127–135

    Article  CAS  Google Scholar 

  28. Kim SK, Lee JH, Ahn IY et al (2011) Performance of Cu-promoted Pd catalysts prepared by adding Cu using a surface redox method in acetylene hydrogenation. Appl Catal A-Gen 401(1–2):12–19

    Article  CAS  Google Scholar 

  29. Kang M, Song MW, Kim KL (2002) SMSI effect on ceria supported Cu-Pd catalysts in the hydrogenation of 1,3-butadiene. React Kinet Catal Lett 75(1):177–183

    Article  CAS  Google Scholar 

  30. Cooper A, Bachiller-Baeza B, Anderson JA et al (2014) Design of surface sites for the selective hydrogenation of 1,3-butadiene on Pd nanoparticles: Cu bimetallic formation and sulfur poisoning. Catal Sci Tech 4(5):1446–1455

    Article  CAS  Google Scholar 

  31. Insorn P, Suriyaphaparkorn K, Kitiyanan B (2013) Selective hydrogenation of 1-hexyne using Pd–Cu and Pd-W supported on alumina catalysts. In: 11th International conference on chemical and process engineering, Pts 1–4, vol 32, pp 847–852

    Google Scholar 

  32. Guczi L, Schay Z, Stefler G et al (1999) Pumice-supported Cu-Pd catalysts: influence of copper on the activity and selectivity of palladium in the hydrogenation of phenylacetylene and but-1-ene. J Catal 182(2):456–462

    Article  CAS  Google Scholar 

  33. Mashkovsky IS, Baeva GN, Stakheev AY et al (2014) Novel Pd–Zn/C catalyst for selective alkyne hydrogenation: evidence for the formation of Pd–Zn bimetallic alloy particles. Mendeleev Comm 24(6):355–357

    Article  CAS  Google Scholar 

  34. Tew MW, Emerich H, van Bokhoven JA (2011) Formation and characterization of PdZn alloy: a very selective catalyst for alkyne semihydrogenation. J Phys Chem C 115(17):8457–8465

    Article  CAS  Google Scholar 

  35. Osswald J, Giedigkeit R, Jentoft RE et al (2008) Palladium-gallium intermetallic compounds for the selective hydrogenation of acetylene—Part I: preparation and structural investigation under reaction conditions. J Catal 258(1):210–218

    Article  CAS  Google Scholar 

  36. Osswald J, Kovnir K, Armbruester M et al (2008) Palladium-gallium intermetallic compounds for the selective hydrogenation of acetylene—Part II: surface characterization and catalytic performance. J Catal 258(1):219–227

    Article  CAS  Google Scholar 

  37. Kovnir K, Osswald J, Armbruester M et al (2006) PdGa and Pd3Ga7: highly-selective catalysts for the acetylene partial hydrogenation. In: Scientific bases for the preparation of heterogeneous catalysts, proceedings of the 9th international symposium, vol 162, pp 481–488

    Google Scholar 

  38. Armbruester M, Wowsnick G, Friedrich M et al (2011) Synthesis and catalytic properties of nanoparticulate intermetallic Ga-Pd compounds. J Am Chem Soc 133(23):9112–9118

    Article  CAS  Google Scholar 

  39. Kovnir K, Armbruester M, Teschner D et al (2009) In situ surface characterization of the intermetallic compound PdGa—a highly selective hydrogenation catalyst. Surf Sci 603(10–12):1784–1792

    Article  CAS  Google Scholar 

  40. Ota A, Armbruester M, Behrens M et al (2011) Intermetallic compound Pd2Ga as a selective catalyst for the semi-hydrogenation of acetylene: from model to high performance systems. J Phys Chem C 115(4):1368–1374

    Article  CAS  Google Scholar 

  41. He Y, Liang L, Liu Y et al (2014) Partial hydrogenation of acetylene using highly stable dispersed bimetallic Pd–Ga/MgO–Al2O3 catalyst. J Catal 309:166–173

    Article  CAS  Google Scholar 

  42. Yang Z, Li X, Wu X (2001) Present situation of gallium production and its application prospect. World Nonferrous Metals 08:9–11

    Google Scholar 

  43. Daley SP, Utz AL, Trautman TR et al (1994) Ethylene hydrogenation on Ni(111) by bulk hydrogen. J Am Chem Soc 116(13):6001–6002

    Article  CAS  Google Scholar 

  44. Pena JA, Herguido J, Guimon C et al (1996) Hydrogenation of acetylene over Ni/NiAl2O4 catalyst: Characterization, coking, and reaction studies. J Catal 159(2):313–322

    Article  CAS  Google Scholar 

  45. Keane MA (1997) The hydrogenation of o-, m-, and p-xylene over Ni/SiO2. J Catal 166(2):347–355

    Article  CAS  Google Scholar 

  46. Song MW, Kang M, Kim TW et al (2001) The enhancement of 1-butene selectivity in the hydrogenation of 1,3-butadiene over K-Ni catalysts. J Chem Eng Japan 34(11):1407–1414

    Article  CAS  Google Scholar 

  47. Liu T, Jin Y, Wei M et al(2003) Selective hydrogenation of FCC light gasoline on the Ni-La/Al2O3 Catalyst. J Petrochem Universities 16(4):24–26,34

    Google Scholar 

  48. Lonergan WW, Xing XJ, Zheng RY et al (2011) Low-temperature 1,3-butadiene hydrogenation over supported Pt/3d/γ–Al2O3 bimetallic catalysts. Catal Today 160(1):61–69

    Article  CAS  Google Scholar 

  49. Lonergan WW, Vlachos DG, Chen JG (2010) Correlating extent of Pt–Ni bond formation with low-temperature hydrogenation of benzene and 1,3-butadiene over supported Pt/Ni bimetallic catalysts. J Catal 271(2):239–250

    Article  CAS  Google Scholar 

  50. Qi S, Yu W, Lonergan WW et al (2010) General trends in the partial and complete hydrogenation of 1,4-cyclohexadiene over Pt–Co, Pt–Ni and Pt–Cu bimetallic catalysts. ChemCatChem 2(6):625–628

    Article  CAS  Google Scholar 

  51. Qi S, Yu W, Lonergan WW et al (2010) Low-temperature hydrogenation and dehydrogenation of 1, 3-cyclohexadiene on Pt/Ni bimetallic catalysts. Chin J Catal 31(8):955–960

    Article  CAS  Google Scholar 

  52. Lonergan WW, Wang T, Vlachos DG et al (2011) Effect of oxide support surface area on hydrogenation activity: Pt/Ni bimetallic catalysts supported on low and high surface area Al2O3 and ZrO2. App Catal A-Gen 408(1–2):87–95

    Article  CAS  Google Scholar 

  53. Lonergan WW, Xing X, Zheng R et al (2011) Low-temperature 1,3-butadiene hydrogenation over supported Pt/3d/γ–Al2O3 bimetallic catalysts. Catal Today 160(1):61–69

    Article  CAS  Google Scholar 

  54. Qi S, Cheney BA, Zheng R et al (2011) The effects of oxide supports on the low temperature hydrogenation activity of acetone over Pt/Ni bimetallic catalysts on SiO2, γ–Al2O3 and TiO2. App Catal A-Gen 393(1–2):44–49

    CAS  Google Scholar 

  55. Yu W, Porosoff MD, Chen JG (2012) Review of Pt-based bimetallic catalysis: from model surfaces to supported catalysts. Chem Rev 112(11):5780–5817

    Article  CAS  Google Scholar 

  56. Miegge P, Rousset JL, Tardy B et al (1994) Pd1Ni99 and Pd5Ni95—Pd surface segregation and reactivity for the hydrogenation of 1,3-butadiene. J Catal 149(2):404–413

    Article  CAS  Google Scholar 

  57. Saint-Lager MC, Jugnet Y, Dolle P et al (2005) Pd8Ni92(110) surface structure from surface X-ray diffraction: Surface evolution under hydrogen and butadiene reactants at elevated pressure. Surf Sci 587(3):229–235

    Article  CAS  Google Scholar 

  58. Michel AC, Lianos L, Rousset JL et al (1998) Surface characterization and reactivity of Pd8Ni92(111) and (110) alloys. Surf Sci 416(1–2):288–294

    Article  CAS  Google Scholar 

  59. Hermann P, Tardy B, Jugnet Y et al (1996) Surface characterisation and reactivity of a Pd 0.5 monolayer deposit on Ni(110). Catal Lett 36(1–2):9–13

    Article  CAS  Google Scholar 

  60. Hermann P, Guigner JM, Tardy B et al (1996) The Pd/Ni(110) bimetallic system: surface characterisation by LEED, AES, XPS, and LEIS techniques; new insight on catalytic properties. J Catal 163(1):169–175

    Article  CAS  Google Scholar 

  61. Porte L, Phaner-Goutorbe M, Guigner JM et al (1999) Structuring and catalytic activity of palladium thin layers deposited on the Ni(110) surface. Surf Sci 424(2–3):262–270

    Article  CAS  Google Scholar 

  62. Goda AM, Barteau MA, Chen JG (2006) Correlating electronic properties of bimetallic surfaces with reaction pathways of C-2 hydrocarbons. J Phys Chem B 110(24):11823–11831

    Article  CAS  Google Scholar 

  63. Wang X (2013) A DFT study of selective hydrogenaion of acetylene over Pd–Ni bimetallic surface and defect Pd(111) surface. Dissertation, Beijing University of Chemical Technology

    Google Scholar 

  64. Valcárcel A, Clotet A, Ricart JM et al (2005) Selectivity control for the catalytic 1,3-butadiene hydrogenation on Pt (111) and Pd (111) surfaces: radical versus closed-shell intermediates. J Phys Chem B 109(29):14175–14182

    Article  Google Scholar 

  65. Hou R, Yu W, Porosoff MD et al (2014) Selective hydrogenation of 1,3-butadiene on Pd–Ni bimetallic catalyst: from model surfaces to supported catalysts. J Catal 316:1–10

    Article  CAS  Google Scholar 

  66. Liu P, Norskov JK (2001) Ligand and ensemble effects in adsorption on alloy surfaces. Phys Chem Chem Phys 3(17):3814–3818

    Article  CAS  Google Scholar 

  67. Gomez G, Belelli PG, Cabeza GF et al (2010) The adsorption of 1,3-butadiene on Pd/Ni multilayers: the interplay between spin polarization and chemisorption strength. J Solid State Chem 183(12):3086–3092

    Article  CAS  Google Scholar 

  68. Nascente PA, Carazzolle M, de Siervo A et al (2008) Crystallographic structure of ultra-thin films of Pd on Ni(111) and Ni on Pd(111) studied by photoelectron diffraction. J Mol Catal A-Chem 281(1):3–8

    Article  CAS  Google Scholar 

  69. Cumpson PJ, Seah MP (1997) Elastic scattering corrections in AES and XPS.2. Estimating attenuation lengths and conditions required for their valid use in overlayer/substrate experiments. Surf Interface Anal 25(6):430–446

    Article  CAS  Google Scholar 

  70. Carazzolle M, Maluf S, de Siervo A et al (2007) Surface composition and structure of nickel ultra-thin films deposited on Pd (111). J Electron Spectrosc 156:405–408

    Article  Google Scholar 

  71. Kitchin JR, Khan NA, Barteau MA et al (2003) Elucidation of the active surface and origin of the weak metal-hydrogen bond on Ni/Pt (111) bimetallic surfaces: a Surf Sci and density functional theory study. Surf Sci 544(2):295–308

    Article  CAS  Google Scholar 

  72. Fu J, Yang X, Menning CA et al (2016) Composition, structure and stability of surfaces formed by Ni deposition on Pd (111). Surf Sci 646:56–64

    Article  CAS  Google Scholar 

  73. Shaikhutdinov S, Heemeier M, Bäumer M et al (2001) Structure-reactivity relationships on supported metal model catalysts: adsorption and reaction of ethene and hydrogen on Pd/Al2O3/NiAl (110). J Catal 200(2):330–339

    Article  CAS  Google Scholar 

  74. Farias D, Patting M, Rieder K (1997) Helium diffraction investigations of the transition of chemisorbed hydrogen into subsurface sites on palladium surfaces. Phys Status Solidi A 159(1):255–262

    Article  CAS  Google Scholar 

  75. Valcarcel A, Morfin F, Piccolo L (2009) Alkene hydrogenation on metal surfaces: why and when are Pd overlayers more efficient catalysts than bulk Pd? J Catal 263(2):315–320

    Article  CAS  Google Scholar 

  76. Rupprechter G, Somorjai GA (1997) Palladium-catalyzed hydrogenation without hydrogen: the hydrodechlorination of chlorofluorocarbons with solid state hydrogen over the palladium (111) crystal surface and its implications. Catal Lett 48(1–2):17–20

    Article  CAS  Google Scholar 

  77. Filhol JS, Simon D, Sautet P (2004) Understanding the high activity of a nanostructured catalyst obtained by a deposit of Pd on Ni: First principle calculations. J Am Chem Soc 126(10):3228–3233

    Article  CAS  Google Scholar 

  78. Tew MW, Janousch M, Huthwelker T et al (2011) The roles of carbide and hydride in oxide-supported palladium nanoparticles for alkyne hydrogenation. J Catal 283(1):45–54

    Article  CAS  Google Scholar 

  79. Hou R, Wang T, Lan X (2013) Enhanced selectivity in the hydrogenation of acetylene due to the addition of a liquid phase as a selective solvent. Ind Eng Chem Res 52(37):13305–13312

    Article  CAS  Google Scholar 

  80. Menning CA, Chen JG (2009) General trend for adsorbate-induced segregation of subsurface metal atoms in bimetallic surfaces. J Chem Phys 130(17):363–366

    Article  Google Scholar 

  81. Porosoff MD, Chen JG (2013) Trends in the catalytic reduction of CO2 by hydrogen over supported monometallic and bimetallic catalysts. J Catal 301:30–37

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruijun Hou .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Hou, R. (2017). Selective Hydrogenation of 1,3-Butadiene on Pd–Ni Bimetallic Catalyst: From Model Surfaces to Supported Catalysts. In: Catalytic and Process Study of the Selective Hydrogenation of Acetylene and 1,3-Butadiene. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-10-0773-6_3

Download citation

Publish with us

Policies and ethics