Temporal Context-Aware Recommendation

  • Hongzhi YinEmail author
  • Bin Cui
Part of the SpringerBriefs in Computer Science book series (BRIEFSCOMPUTER)


Users’ behaviors in social media systems are generally influenced by intrinsic interest as well as the temporal context (e.g., the public’s attention at that time). In this chapter, we focus on analyzing user behaviors in social media systems and designing a latent class statistical mixture model, named temporal context-aware mixture model (TCAM), to account for the intentions and preferences behind user behaviors. TCAM simultaneously models the topics related to users’ intrinsic interests and the topics related to temporal context, and then combines the influences from the two factors to model user behaviors in a unified way. To further improve the performance of TCAM, an item-weighting scheme is proposed to enable TCAM to favor items that better represent topics related to user interests and topics related to temporal context, respectively. Extensive experiments have been conducted to evaluate the performance of TCAM on four real-world datasets crawled from different social media sites. The experimental results demonstrate the superiority of the TCAM models.


Dynamic user behavior Temporal recommendation Temporal context modeling Entropy filtering 


  1. 1.
    Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. In: Journal of MachineLearning Research, pp. 993–1022 (2003)Google Scholar
  2. 2.
    Campos, P.G., Díez, F., Cantador, I.: Time-aware recommender systems: a comprehensive survey and analysis of existing evaluation protocols. User Model. User-Adapt. Interact.24(1–2), 67–119 (2014)Google Scholar
  3. 3.
    Cha, Y., Bi, B., Hsieh, C.-C., Cho, J.: Incorporating popularity in topic models for social network analysis. In: SIGIR, pp. 223–232 (2013)Google Scholar
  4. 4.
    Cha, Y., Cho, J.: Social-network analysis using topic models. In: SIGIR, pp. 565–574 (2012)Google Scholar
  5. 5.
    Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley-Interscience, New Jersey (1991)CrossRefzbMATHGoogle Scholar
  6. 6.
    Das, A.S., Datar, M., Garg, A., Rajaram, S.: Google news personalization: scalable online collaborative filtering. In: WWW, pp. 271–280 (2007)Google Scholar
  7. 7.
    Gantner, Z., Rendle, S., Freudenthaler, C., Schmidt-Thieme, L.: Mymedialite: a free recommender system library. In: RecSys, pp. 305–308 (2011)Google Scholar
  8. 8.
    Hofmann, T.: Probabilistic latent semantic analysis. In: UAI (1999)Google Scholar
  9. 9.
    Lerman, K., Ghosh, R.: Information contagion: an empirical study of the spread of news on digg and twitter social networks. In: ICWSM (2010)Google Scholar
  10. 10.
    Liu, J., Dolan, P., Pedersen, E.R.: Personalized news recommendation based on click behavior. In: IUI, pp. 31–40 (2010)Google Scholar
  11. 11.
    Mei, Q., Zhai, C.: Discovering evolutionary theme patterns from text: an exploration of temporal text mining. In: KDD, pp. 198–207 (2005)Google Scholar
  12. 12.
    Michelson, M., Macskassy, S.A.: Discovering users’ topics of interest on twitter: a first look. In: AND, pp. 73–80 (2010)Google Scholar
  13. 13.
    Rendle, S., Freudenthaler, C., Gantner, Z., Schmidt-Thieme, L.: Bpr: Bayesian personalized ranking from implicit feedback. In: UAI, pp. 452–461 (2009)Google Scholar
  14. 14.
    Rosen Zvi, M., Griffiths, T., Steyvers, M., Smyth P.: The author-topic model for authors and documents. In: UAI, pp. 487–494 (2004)Google Scholar
  15. 15.
    Stoyanovich, J., Amer Yahia, S., Marlow, C., Yu, C.: Leveraging tagging to model user interests in In: AAAI (2008)Google Scholar
  16. 16.
    Wang, X., Zhai, C., Hu, X., Sproat, R.: Mining correlated bursty topic patterns from coordinated text streams. In: KDD, pp. 784–793 (2007)Google Scholar
  17. 17.
    Wen, Z., Lin, C.Y.: On the quality of inferring interests from social neighbors. In: KDD, pp. 373–382 (2010)Google Scholar
  18. 18.
    Wolfe, J., Haghighi, A., Klein, D.: Fully distributed em for very large datasets. In: ICML, pp. 1184–1191 (2008)Google Scholar
  19. 19.
    Xiong, L., Chen, X., Huang, T.-K., Schneider, J.G., Carbonell, J.G.: Temporal collaborative filtering with bayesian probabilistic tensor factorization. In: SDM, pp. 211–222 (2010)Google Scholar
  20. 20.
    Xu, Z., Zhang, Y., Wu, Y., Yang, Q.: Modeling user posting behavior on social media. In: SIGIR, pp. 545–554 (2012)Google Scholar
  21. 21.
    Yin, H., Cui, B., Chen, L., Hu, Z., Huang, Z.:A temporal context-aware model for user behavior modeling in social media systems. In: SIGMOD, pp. 1543–1554 (2014)Google Scholar
  22. 22.
    Yin, H., Cui, B., Chen, L., Hu, Z., Zhou, X.: Dynamic user modeling in social media systems. ACM Trans. Inf. Syst. 33(3), 10:1–10:44 (2015)CrossRefGoogle Scholar
  23. 23.
    Yin, H., Cui, B., Li, J., Yao, J., Chen, C.: Challenging the long tail recommendation. Proc. VLDB Endow. 5(9), 896–907 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Singapore 2016

Authors and Affiliations

  1. 1.The University of QueenslandBrisbaneAustralia
  2. 2.Peking UniversityBeijingChina

Personalised recommendations