Skip to main content

Methods to Determine Electrical Conductance of Single-Molecule Junctions

  • Chapter
  • First Online:
Single-Molecule Electronics
  • 1249 Accesses

Abstract

In this chapter, three major experimental methods, i.e., a break junction (BJ) method, an electromigration (EM) method, and an ultrahigh-vacuum low-temperature scanning tunneling microscopy (UHV-LT-STM), to measure electrical properties of single-molecule junctions are explained with some remarkable example of studies. The BJ method is the most widely used technique and explained including statistical analytical methods to analyze data. Studies of molecular switch and temperature dependence are shown as examples of studies based on statistical analysis as well as examples of static current-voltage measurements with external field modulations. Techniques related to the BJ method such as distance modulation and electromechanical response measurements are also introduced. Although the EM method can suffer from several problems, it is still useful to measure electrical gate effects and in the preparation of nanoscale gap electrodes. A novel application of the EM method to create in-plane nano-holes that would open a new application field of the single-molecule measurement techniques is shown. The UHV-LT-STM is capable of forming single-molecule junctions on single-crystal surfaces and manipulating molecules on the surface that enables researchers to study single-molecule junctions under controlled and well-defined structures and environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ashwell GJ, Sambles JR, Martin AS, Parker WG, Szablewski M (1990) Rectifying characteristics of Mg|(C16H33-Q3CNQ LB film)|Pt structures. J Chem Soc Chem Commun 19:1374. http://doi.org/10.1039/c39900001374

    Article  Google Scholar 

  2. Wang W, Lee T, Reed MA (2004) Elastic and inelastic electron tunneling in alkane self-assembled monolayers. J Phys Chem B 108(48):18398–18407. http://doi.org/10.1021/jp048904k

    Article  CAS  Google Scholar 

  3. Cui XD (2001) Reproducible measurement of single-molecule conductivity. Science 294(5542):571–574. http://doi.org/10.1126/science.1064354

    Article  CAS  Google Scholar 

  4. Dadosh T, Gordin Y, Krahne R, Khivrich I, Mahalu D, Frydman V, Bar-joseph I (2005) Measurement of the conductance of single conjugated molecules. Nature 436:2–6. http://doi.org/10.1038/nature03898

    Google Scholar 

  5. Jafri SHM, Löfås H, Blom T, Wallner A, Grigoriev A, Ahuja R, Leifer K (2015) Nano-fabrication of molecular electronic junctions by targeted modification of metal-molecule bonds. Sci Rep 5:14431. http://doi.org/10.1038/srep14431

    Article  CAS  Google Scholar 

  6. Kushmerick JG, Holt DB, Yang JC, Naciri J, Moore MH, Shashidhar R (2002) Metal-molecule contacts and charge transport across monomolecular layers: measurement and theory. Phys Rev Lett 89(8):086802. http://doi.org/10.1103/PhysRevLett.89.086802

    Article  CAS  Google Scholar 

  7. Schwarz F, Lörtscher E (2014) Break-junctions for investigating transport at the molecular scale. J Phys Condens Matter 26(47):474201. http://doi.org/10.1088/0953-8984/26/47/474201

    Article  Google Scholar 

  8. Xiang D, Jeong H, Lee T, Mayer D (2013) Mechanically controllable break junctions for molecular electronics. Adv Mater 25(35):4845–4867. http://doi.org/10.1002/adma.201301589

    Article  CAS  Google Scholar 

  9. Tsutsui M, Taniguchi M (2012) Single molecule electronics and devices. Sensors (Basel, Switzerland) 12(6):7259–7298. http://doi.org/10.3390/s120607259

    Article  CAS  Google Scholar 

  10. Van Ruitenbeek J, Scheer E, Weber HB (2005) Contacting individual molecules using mechanically controllable break junctions. Lect Notes Phys 680:253

    Google Scholar 

  11. Selzer Y, Allara DL (2006) Single-molecule electrical junctions. Annu Rev Phys Chem 57(1):593–623. http://doi.org/10.1146/annurev.physchem.57.032905.104709

    Article  CAS  Google Scholar 

  12. Tao NJ (2006) Electron transport in molecular junctions. Nat Nanotechnol 1(3):173–181. http://doi.org/10.1038/nnano.2006.130

    Article  CAS  Google Scholar 

  13. McCreery RL (2004) Molecular electronic junctions. Chem Mater 16(23):4477–4496. http://doi.org/10.1021/cm049517q

    Article  CAS  Google Scholar 

  14. Metzger RM (2015) Unimolecular electronics. Chem Rev 115(11):5056–5115. http://doi.org/10.1021/cr500459d

    Article  CAS  Google Scholar 

  15. Xu B (2003) Measurement of single-molecule resistance by repeated formation of molecular junctions. Science 301(5637):1221–1223. http://doi.org/10.1126/science.1087481

    Article  CAS  Google Scholar 

  16. Reed MA (1997) Conductance of a molecular junction. Science 278(5336):252–254. http://doi.org/10.1126/science.278.5336.252

    Article  CAS  Google Scholar 

  17. Li X, He J, Hihath J, Xu B, Lindsay SM, Tao N (2006) Conductance of single alkanedithiols: conduction mechanism and effect of molecule−electrode contacts. J Am Chem Soc 128(6):2135–2141. http://doi.org/10.1021/ja057316x

    Article  CAS  Google Scholar 

  18. Ishtzuka K, Suzuki M, Fujii S, Takayama Y, Sato F, Fujihira M (2006) Effect of molecule-electrode contacts on single-molecule conductivity of π-conjugated system measured by scanning tunneling microscopy under ultrahigh vacuum. Jpn J Appl Phys Part 1 45(3 B):2037–2040. http://doi.org/10.1143/JJAP.45.2037

    Article  Google Scholar 

  19. Li C, Pobelov I, Wandlowski T, Bagrets A, Arnold A, Evers F (2008) Charge transport in single Au|Alkanedithiol|Au junctions: coordination geometries and conformational degrees of freedom. J Am Chem Soc 130(17):19. http://doi.org/10.1021/ja0762386

    Article  Google Scholar 

  20. He J, Chen F, Li J, Sankey OF, Terazono Y, Herrero C, Lindsay SM (2005) Electronic decay constant of carotenoid polyenes from single-molecule measurements. J Am Chem Soc 127(5):1384–1385. http://doi.org/10.1021/ja043279i

    Article  CAS  Google Scholar 

  21. Yamada R, Kumazawa H, Noutoshi T, Tanaka S, Tada H (2008) Electrical conductance of oligothiophene molecular wires. Nano Lett 8(4):1237–1240. http://doi.org/10.1021/nl0732023

    Article  CAS  Google Scholar 

  22. Venkataraman L, Klare JE, Nuckolls C, Hybertsen MS, Steigerwald ML (2006) Dependence of single-molecule junction conductance on molecular conformation. Nature 442(7105):904–907. http://doi.org/10.1038/nature05037

    Article  CAS  Google Scholar 

  23. Chen F, Li X, Hihath J, Huang Z, Tao N (2006) Effect of anchoring groups on single-molecule conductance: comparative study of thiol-, amine-, and carboxylic-acid-terminated molecules. J Am Chem Soc 128(49):15874–15881. http://doi.org/10.1021/ja065864k

    Article  CAS  Google Scholar 

  24. Park YS, Whalley AC, Kamenetska M, Steigerwald ML, Hybertsen MS, Nuckolls C, Venkataraman L (2007) Contact chemistry and single-molecule conductance: a comparison of phosphines, methyl sulfides, and amines. J Am Chem Soc 129(51):15768–15769. http://doi.org/10.1021/ja0773857

    Article  CAS  Google Scholar 

  25. Venkataraman L, Park YS, Whalley AC, Nuckolls C, Hybertsen MS, Steigerwald ML (2007) Electronics and chemistry: varying single-molecule junction conductance using chemical substituents. Nano Lett 7(2):502–506. http://doi.org/10.1021/nl062923j

    Article  CAS  Google Scholar 

  26. Troisi A, Ratner MA (2006) Molecular signatures in the transport properties of molecular wire junctions: what makes a junction “molecular”? Small 2(2):172–181. http://doi.org/10.1002/smll.200500201

    Article  CAS  Google Scholar 

  27. Luo L, Choi SH, Frisbie CD (2011) Probing hopping conduction in conjugated molecular wires connected to metal electrodes. Chem Mater 23(3):631–645. http://doi.org/10.1021/cm102402t

    Article  CAS  Google Scholar 

  28. Poot M, Osorio E, O’Neill K, Thijssen JM, Vanmaekelbergh D, van Walree CA, van der Zant HSJ (2006) Temperature dependence of three-terminal molecular junctions with sulfur end-functionalized tercyclohexylidenes. Nano Lett 6(5):1031–1035. http://doi.org/10.1021/nl0604513

    Article  CAS  Google Scholar 

  29. Yamada R, Kumazawa H, Tanaka S, Tada H (2009) Electrical resistance of long oligothiophene molecules. Appl Phys Express 2(2). http://doi.org/10.1143/APEX.2.025002

    Google Scholar 

  30. Lee SK, Yamada R, Tanaka S, Chang GS, Asai Y, Tada H (2012) Universal temperature crossover behavior of electrical conductance in a single oligothiophene molecular wire. ACS Nano 6(6):5078–5082. http://doi.org/10.1021/nn3006976

    Article  CAS  Google Scholar 

  31. Vrouwe S, van der Giessen E, van der Molen S, Dulic D, Trouwborst M, van Wees B (2005) Mechanics of lithographically defined break junctions. Phys Rev B 71(3):1–7. http://doi.org/10.1103/PhysRevB.71.035313

    Article  Google Scholar 

  32. Zhou C, Muller CJ, Deshpande MR, Sleight JW, Reed M a (1995) Microfabrication of a mechanically controllable break junction in silicon. Appl Phys Lett 67(8):1160. http://doi.org/10.1063/1.114994

    Article  CAS  Google Scholar 

  33. Perrin ML, Frisenda R, Koole M, Seldenthuis JS, Gil JA, Valkenier H, van der Zant HSJ (2014) Large negative differential conductance in single-molecule break junctions. Nat Nanotechnol 9(10):830–834. http://doi.org/10.1038/nnano.2014.177

    Article  CAS  Google Scholar 

  34. Egle S, Bacca C, Pernau HF, Huefner M, Hinzke D, Nowak U, Scheer E (2010) Magnetoresistance of atomic-size contacts realized with mechanically controllable break junctions. Phys Rev B - Condens Matter Mater Phys 81(13):1–11. http://doi.org/10.1103/PhysRevB.81.134402

    Article  Google Scholar 

  35. Jammalamadaka SN, Kuntz S, Berg O, Kittler W, Kannan UM, Chelvane JA, Sürgers C (2015) Remote control of magnetostriction-based nanocontacts at room temperature. Sci Rep 5:13621. http://doi.org/10.1038/srep13621

    Article  Google Scholar 

  36. Yamada R, Noguchi M, Tada H (2011) Magnetoresistance of single molecular junctions measured by a mechanically controllable break junction method. Appl Phys Lett 98(5). http://doi.org/10.1063/1.3549190

    Google Scholar 

  37. Martin CA, Ding D, Sørensen JK, Bjørnholm T, van Ruitenbeek JM, van der Zant HSJ (2008) Fullerene-based anchoring groups for molecular electronics. J Am Chem Soc 130(40):13198–13199. http://doi.org/10.1021/ja804699a

    Article  CAS  Google Scholar 

  38. Quek SY, Kamenetska M, Steigerwald ML, Choi HJ, Louie SG, Hybertsen MS, Venkataraman L (2009) Mechanically controlled binary conductance switching of a single-molecule junction. Nat Nanotechnol 4(4):230–234. http://doi.org/10.1038/nnano.2009.10

    Article  CAS  Google Scholar 

  39. Wawrzyniak M, Martinek J, Susla B, Ilnicki G (2009) Correlation histograms in conductance measurements of nanowires formed at semiconductor interfaces. Acta Phys Pol A 115(1):384–386

    Article  CAS  Google Scholar 

  40. Makk P, Tomaszewski D, Martinek J, Balogh Z, Csonka S, Wawrzyniak M, Halbritter A (2012) Correlation analysis of atomic and single-molecule junction conductance. ACS Nano 6(4):3411–3423. http://doi.org/10.1021/nn300440f

    Article  CAS  Google Scholar 

  41. Mishchenko A, Zotti LA, Vonlanthen D, Bürkle M, Pauly F, Cuevas JC, Wandlowski T (2011) Single-molecule junctions based on nitrile-terminated biphenyls: a promising new anchoring group. J Am Chem Soc 133(2):184–187. http://doi.org/10.1021/ja107340t

    Article  CAS  Google Scholar 

  42. Xia JL, Diez-Perez I, Tao NJ (2008) Electron transport in single molecules measured by a distance-modulation assisted break junction method. Nano Lett 8(7):1960–1964. http://doi.org/10.1021/nl080857a

    Article  CAS  Google Scholar 

  43. Binnig G, Rohrer H, Gerber C, Weibel E (1982) Tunneling through a controllable vacuum gap. Appl Phys Lett 40(2):178–180. http://doi.org/10.1063/1.92999

    Article  CAS  Google Scholar 

  44. Bruot C, Palma JL, Xiang L, Mujica V, Ratner MA, Tao N (2015) Piezoresistivity in single DNA molecules. Nat Commun 6(May):8032. http://doi.org/10.1038/ncomms9032

    Article  Google Scholar 

  45. Díez-Pérez I, Hihath J, Lee Y, Yu L, Adamska L, Kozhushner MA, Tao N (2009) Rectification and stability of a single molecular diode with controlled orientation. Nat Chem 1(8):635–641. http://doi.org/10.1038/nchem.392

    Article  Google Scholar 

  46. Diez-Perez I, Hihath J, Hines T, Wang Z-S, Zhou G, Müllen K, Tao N (2011) Controlling single-molecule conductance through lateral coupling of π orbitals. Nat Nanotechnol 6(4):226–231. http://doi.org/10.1038/nnano.2011.20

    Article  CAS  Google Scholar 

  47. Xu B, Xiao X, Tao NJ (2003) Measurements of single-molecule electromechanical properties. J Am Chem Soc 125(52):16164–16165. http://doi.org/10.1021/ja038949j

    Article  CAS  Google Scholar 

  48. Xu BQ, Li XL, Xiao XY, Sakaguchi H, Tao NJ (2005) Electromechanical and conductance switching properties of single oligothiophene molecules. Nano Lett 5(7):1491–1495. http://doi.org/10.1021/nl050860j

    Article  CAS  Google Scholar 

  49. Frei M, Aradhya SV, Koentopp M, Hybertsen MS, Venkataraman L (2011) Mechanics and chemistry: single molecule bond rupture forces correlate with molecular backbone structure. Nano Lett 11(4):1518–1523. http://doi.org/10.1021/nl1042903

    Article  CAS  Google Scholar 

  50. Aradhya SV, Frei M, Hybertsen MS, Venkataraman L (2012) Van der Waals interactions at metal/organic interfaces at the single-molecule level. Nat Mater 11(10):872–876. http://doi.org/10.1038/nmat3403

    Article  CAS  Google Scholar 

  51. Yoshida K, Pobelov IV, Manrique DZ, Pope T, Mészáros G, Gulcur M, Wandlowski T (2015) Correlation of breaking forces, conductances and geometries of molecular junctions. Sci Rep 5:9002. http://doi.org/10.1038/srep09002

    Article  CAS  Google Scholar 

  52. Perrin ML, Burzurí E, van der Zant HSJ (2015) Single-molecule transistors. Chem Soc Rev 44(4):902–919. http://doi.org/10.1039/C4CS00231H

    Article  CAS  Google Scholar 

  53. Cui A, Dong H, Hu W (2015) Nanogap electrodes towards solid state single-molecule transistors. Small 11(46):6115–6141. http://doi.org/10.1002/smll.201501283

    Google Scholar 

  54. Kubatkin S, Danilov A, Hjort M, Cornil J, Brédas J-L, Stuhr-Hansen N, Bjørnholm T (2003) Single-electron transistor of a single organic molecule with access to several redox states. Nature 425(6959):698–701. http://doi.org/10.1038/nature02010

    Article  CAS  Google Scholar 

  55. Martin CA, Smit RHM, van der Zant HSJ, van Ruitenbeek JM (2009) A nanoelectromechanical single-atom switch. Nano Lett 9(8):2940–2945. http://doi.org/10.1021/nl901355y

    Google Scholar 

  56. Xiang D, Jeong H, Kim D, Lee T, Cheng Y, Wang Q, Mayer D (2013) Three-terminal single-molecule junctions formed by mechanically controllable break junctions with side gating. Nano Lett 13(6):2809–2813. http://doi.org/10.1021/nl401067x

    Article  CAS  Google Scholar 

  57. Martin CA, van Ruitenbeek JM, van der Zant HSJ (2010) Sandwich-type gated mechanical break junctions. Nanotechnology 21(26):265201. http://doi.org/10.1088/0957-4484/21/26/265201

    Article  Google Scholar 

  58. Perrin ML, Verzijl CJO, Martin CA, Shaikh AJ, Eelkema R, Van Esch JH, Dulić D (2013) Large tunable image-charge effects in single-molecule junctions. Nat Nanotechnol 8(4):282–287. http://doi.org/10.1038/nnano.2013.26

    Article  CAS  Google Scholar 

  59. Huang C, Rudnev AV, Hong W, Wandlowski T (2015) Break junction under electrochemical gating: testbed for single-molecule electronics. Chem Soc Rev 44:889–901. http://doi.org/10.1039/C4CS00242C

    Google Scholar 

  60. Li X, Hihath J, Chen F, Masuda T, Zang L, Tao N (2007) Thermally activated electron transport in single redox molecules. J Am Chem Soc 129(37):11535–11542. http://doi.org/10.1021/ja072990v

    Google Scholar 

  61. Lloyd JR (1997) Electromigration in thin film conductors. Defect Diffus Forum 143–147:1661–1672. http://doi.org/10.4028/www.scientific.net/DDF.143-147.1661

    Article  Google Scholar 

  62. Strachan DR, Smith DE, Johnston DE, Park T-H, Therien MJ, Bonnell D a, Johnson AT (2005) Controlled fabrication of nanogaps in ambient environment for molecular electronics. Appl Phys Lett 86(4):043109. http://doi.org/10.1063/1.1857095

    Article  Google Scholar 

  63. O’Neill K, Osorio EA, Van Der Zant HSJ (2007) Self-breaking in planar few-atom au constrictions for nanometer-spaced electrodes. Appl Phys Lett 90(13). http://doi.org/10.1063/1.2716989

    Google Scholar 

  64. Tsutsui M, Taniguchi M, Kawai T (2008) Fabrication of 0.5 nm electrode gaps using self-breaking technique. Appl Phys Lett 93(16):1–4. http://doi.org/10.1063/1.3006063

    Article  Google Scholar 

  65. Houck AA, Labaziewicz J, Chan EK, Folk JA, Chuang IL (2005) Kondo effect in electromigrated gold break junctions. Nano Lett 5(9):1685–1688. http://doi.org/10.1021/nl050799i

    Article  CAS  Google Scholar 

  66. Song H, Kim Y, Jang YH, Jeong H, Reed MA, Lee T (2009) Observation of molecular orbital gating. Nature 462(7276):1039–1043. http://doi.org/10.1038/nature08639

    Article  CAS  Google Scholar 

  67. Suga H, Sumiya T, Furuta S, Ueki R, Miyazawa Y, Nishijima T, Naitoh Y (2012) Single-crystalline nanogap electrodes: enhancing the nanowire-breakdown process with a gaseous environment. ACS Appl Mater Interfaces 4(10):5542–5546. http://doi.org/10.1021/am301441a

    Article  CAS  Google Scholar 

  68. Tsutsui M, Rahong S, Iizumi Y, Okazaki T, Taniguchi M, Kawai T (2011) Single-molecule sensing electrode embedded in-plane nanopore. Sci Rep 1:46. http://doi.org/10.1038/srep00046

    Article  Google Scholar 

  69. Chen CJ (1993) Introduction to scanning tunneling microscopy. Oxford University Press, New York

    Google Scholar 

  70. Kitaguchi Y, Habuka S, Okuyama H, Hatta S, Aruga T, Frederiksen T, Ueba H (2015) Controlling single-molecule junction conductance by molecular interactions. Sci Rep 5:11796. http://doi.org/10.1038/srep11796

    Article  CAS  Google Scholar 

  71. Tanaka H, Kawai T (1997) Scanning tunneling microscopy imaging and manipulation of DNA oligomer adsorbed on Cu(111) surfaces by a pulse injection method. J Vac Sci Technol B 15(3):602. http://doi.org/10.1116/1.589299

    Article  CAS  Google Scholar 

  72. Yokoyama T, Kogure Y, Kawasaki M, Tanaka S, Aoshima K (2013) Scanning tunneling microscopy imaging of long oligothiophene wires deposited on Au(111) using electrospray ionization. J Phys Chem C 117(36):18484–18487. http://doi.org/10.1021/jp405411f

    Article  CAS  Google Scholar 

  73. Rinke G, Rauschenbach S, Schrettl S, Hoheisel TN, Blohm J, Gutzler R, Kern K (2014) Soft-landing electrospray ion beam deposition of sensitive oligoynes on surfaces in vacuum. Int J Mass Spectrom 377:228–234. http://doi.org/10.1016/j.ijms.2014.06.026

    Article  Google Scholar 

  74. Grill L, Dyer M, Lafferentz L, Persson M, Peters MV, Hecht S (2007) Nano-architectures by covalent assembly of molecular building blocks. Nat Nanotechnol 2(11):687–691. http://doi.org/10.1038/nnano.2007.346

    Article  CAS  Google Scholar 

  75. Lafferentz L, Ample F, Yu HB, Hecht S, Joachim C, Grill L (2009) Conductance of a single conjugated polymer as a continuous function of its length. Science 323(5918):1193–1197. http://doi.org/10.1126/science.1168255

    Article  CAS  Google Scholar 

  76. Nacci C, Ample F, Bleger D, Hecht S, Joachim C, Grill L (2015) Conductance of a single flexible molecular wire composed of alternating donor and acceptor units. Nat Commun 6:7397. http://doi.org/10.1038/ncomms8397

    Article  Google Scholar 

  77. Ie Y, Hirose T, Nakamura H, Kiguchi M, Takagi N, Kawai M, Aso Y (2011) Nature of electron transport by pyridine-based tripodal anchors: potential for robust and conductive single-molecule junctions with gold electrodes. J Am Chem Soc 133(9):3014–3022. http://doi.org/10.1021/ja109577f

    Article  CAS  Google Scholar 

  78. Ie Y, Tanaka K, Tashiro A, Lee SK, Testai HR, Yamada R, Aso Y (2015) Thiophene-based tripodal anchor units for hole transport in single-molecule junctions with gold electrodes. J Phys Chem Lett 6(18):3754–3759. http://doi.org/10.1021/acs.jpclett.5b01662

    Article  CAS  Google Scholar 

  79. Ullmann K, Coto PB, Leitherer S, Molina-Ontoria A, Martin N, Thoss M, Weber HB (2015) Single-molecule junctions with epitaxial graphene nanoelectrodes. Nano Lett 15(5):3512–3518. http://doi.org/10.1021/acs.nanolett.5b00877

    Article  CAS  Google Scholar 

  80. Ru J, Szeto B, Bonifas A, McCreery RL (2010) Microfabrication and integration of diazonium-based aromatic molecular junctions. ACS Appl Mater Interfaces 2(12):3693–3701. http://doi.org/10.1021/am100833e

    Article  CAS  Google Scholar 

  81. Seo S, Min M, Lee SM, Lee H (2013) Photo-switchable molecular monolayer anchored between highly transparent and flexible graphene electrodes. Nat Commun 4(May):1920. http://doi.org/10.1038/ncomms2937

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryo Yamada .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Yamada, R. (2016). Methods to Determine Electrical Conductance of Single-Molecule Junctions. In: Kiguchi, M. (eds) Single-Molecule Electronics. Springer, Singapore. https://doi.org/10.1007/978-981-10-0724-8_2

Download citation

Publish with us

Policies and ethics