Skip to main content

Development of Heating Device

  • Chapter
  • First Online:
  • 705 Accesses

Abstract

Hyperthermia has a long history as a treatment modality for tumors, with the rapid development of heating devices for hyperthermia starting more than a century ago. Ideal heating devices would enable the targeted area to be heated in accordance with the depth and width of the tumor. They would also be integrated with image-guided, four-dimensional, real-time temperature monitoring in the body and a simulation function for the prediction of temperature fluctuations according to treatment and changes in blood flow in order to heat tumors selectively and avoid damage to healthy tissue. However, economic viability is also an important factor, in that the ideal heating device must be able to be covered under national medical health insurance systems if it hopes to gain widespread use in individual medical economies. The development of a sophisticated yet cost-effective device with automatic control functions that is safe for patients and easy for medical staff to use would be expected to contribute to more effective treatment, a reduction in labor costs, and savings to national health care systems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Hall EJ. Hyperthermia. In: Giaccia AJ, Hall EJ, editors. Radiobiology for the radiologist. 6th ed. Philadelphia: Lippincott Williams & Wilkins; 2006. p. 469–70.

    Google Scholar 

  2. Wei MQ, Mengesha A, Good D, Anne J. Bacterial targeted tumour therapy-dawn of a new era. Cancer Lett. 2008;259:16–27. doi:10.1016/j.canlet.2007.10.034.

    Article  CAS  PubMed  Google Scholar 

  3. Coley WB. The Treatment of inoperable sarcoma by bacterial toxins (the mixed toxins of the Streptococcus erysipelas and the Bacillus prodigiosus). Proc Roy Soc Med. 1910;3:1–48.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Seegenschmiedt MH, Vernon CC. A historical perspective on hyperthermia in oncology. In: Seegenschmiedt MH, Fessenden P, Vernon CC, editors. Thermoradiotherapy and thermochemotherapy. Berlin: Springer; 1995. p. 3–44.

    Chapter  Google Scholar 

  5. Kikuchi M. [History of technology development and challenges for the future (in Japanese)]. In: Japanese Society for Thermal Medicine, editor. [Hyperthermia (in Japanese)]. Kobe: Shinryobunko; 2008. p. 154–155.

    Google Scholar 

  6. Wust P, Hildebrandt B, Sreenivasa G, Rau B, Gellermann J, Riess H, et al. Hyperthermia in combined treatment of cancer. LANCET Oncol. 2002;3:487–97.

    Article  CAS  PubMed  Google Scholar 

  7. Chicheł A, Skowronek J, Kubaszewska M, Kanikowski M. Hyperthermia – description of a method and a review of clinical applications. Rep Pract Oncol Radiother. 2007;12:267–75.

    Article  Google Scholar 

  8. Dewhirst MW. Future directions in hyperthermia biology. Int J Hyperthermia. 1994;10:339–45.

    Article  CAS  PubMed  Google Scholar 

  9. Kato H, Kondo M, Imada H, Kuroda M, Kamimura Y, Saito K, et al. Quality assurance: recommended guidelines for safe heating by capacitive-type heating technique to treat patients with metallic implants. Int J Hyperthermia. 2013;29:194–205.

    Article  PubMed  Google Scholar 

  10. BSD-2000/3D/MR. http://www.medicalexpo.com/prod/bsd-medical/product-84451-540429.html. Accessed 15 Oct 2015.

  11. Thermotron RF8 EX Edition. http://www.vinita.co.jp/medical_div/medical/product/. Accessed 15 Oct 2015.

  12. Hiraoka M, Mitsumori M, Hiroi N, Ohno S, Tanaka Y, Kotsuka Y, Sugimachi K. Development of RF and microwave heating equipment and clinical applications to cancer treatment in Japan. IEEE Trans Microw Theory Tech. 2000;48:1789–99.

    Article  Google Scholar 

  13. Wright AS, Mahvi DM, Haemmerich DG, Lee FTJ. Minimally invasive approaches in management of hepatic tumors. Surg Technol Int. 2003;11:144–53.

    PubMed  Google Scholar 

  14. Sugimachi K, Inokuchi K, Kai H, Sogawa A, Kawai Y. Endotract antenna for application of hyperthermia to malignant lesions. Jpn J Cancer Res. 1983;74:622–4.

    CAS  Google Scholar 

  15. Takahashi H, Tanaka R, Uzuka T, Grinev I. Stereotactic technique for radio-frequency antenna implantation for brain tumor treatment -technical note and report of complications-. Jpn J Hyperthermic Oncol. 2005;21:221–30.

    Google Scholar 

  16. Lin JC, Wang Y-J. Interstitial microwave antennas for thermal therapy. Int J Hyperthermia. 1987;3:37–47.

    Article  CAS  PubMed  Google Scholar 

  17. Ito K, Ueno K, Hyodo M, Kasai H. Interstitial applicator composed of coaxial ring slots for microwave hyperthermia. Proc Int Antennas Propagation Symp 1989;253–56.

    Google Scholar 

  18. Van Rhoon GC, Paulides MM, Togni P, Canters RAM, Rijnen Z, Van de Velde-verduijn G, Levendag PC. Challenges of the clinical application of hyperthermia for head and neck tumors. Proc European Conf Antennas Propagation.2013;635–6.

    Google Scholar 

  19. Szasz A. Challenges and solutions in oncological hyperthermia. Thermal Med. 2013;29:123.

    Article  Google Scholar 

  20. Wall PD, Tucker D, Fry FJ, Mosberg WH. The use of high intensity ultrasound in experimental neurology. J Acoust Soc Am. 1953;25:281–5. doi:10.1121/1.1907032.

    Article  Google Scholar 

  21. Uchida T, Sanghvi NT, Gardner TA, Koch MO, Ishii D, Minei S, Satoh T, Hyodo T, Irie A, Baba S. Transrectal high-intensity focused ultrasound for treatment of patients with stage T1b-2NOMO localized prostate cancer: a preliminary report. Urology. 2002;59:394–8. doi:10.1016/S0090-4295(01)01624-7.

    Article  PubMed  Google Scholar 

  22. Funaki K, Fukunishi H, Funaki T, Kawakami C. Mid-term outcome of magnetic resonance-guided focused ultrasound surgery for uterine myomas: from six to twelve months after volume reduction. J Minimally Invasive Gynecology. 2007;14:616–21. doi:10.1016/j.jmig.2007.04.009.

    Article  Google Scholar 

  23. Hill CR. Optimum acoustic frequency for focused ultrasound surgery. Ultrasound Med Biol. 1994;20:271–7. doi:10.1016/0301-5629(94)90067-1.

    Article  CAS  PubMed  Google Scholar 

  24. Umemura S. Focused ultrasound transducer for thermal treatment. Int J Hyperthermia. 2015;31:216–21. doi:10.3109/02656736.2015.1008059.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masahiro Kuroda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Kuroda, M., Saito, K., Ito, K., Umemura, Si. (2016). Development of Heating Device. In: Kokura, S., Yoshikawa, T., Ohnishi, T. (eds) Hyperthermic Oncology from Bench to Bedside. Springer, Singapore. https://doi.org/10.1007/978-981-10-0719-4_36

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-0719-4_36

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-0717-0

  • Online ISBN: 978-981-10-0719-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics