Effects of Fever-Range Hyperthermia on T Cell-Mediated Immunity: Possible Combination of Hyperthermia and T Cell-Based Cancer Immunotherapy

Chapter

Abstract

Elevated body temperature has been thought to play an important role in the regulation of immune responses, and accumulating evidence in thermal medicine indicates that hyperthermia could be a useful combination therapy to enhance the efficacy of cancer immunotherapy. However, the intrinsic effects of elevated body temperature on the immune system are poorly understood, particularly in humans. Future clinical studies are expected to elucidate the practical utility of hyperthermia, and in particular fever-range whole-body hyperthermia in combination with T-cell and/or DC-based cancer immune cell therapy.

Keywords

T cell Fever-range hyperthermia Cancer immune cell therapy 

References

  1. 1.
    Zhang HG, Mehta K, Cohen P, Guha C. Hyperthermia on immune regulation: a temperature’s story. Cancer Lett. 2008;271:191–204.CrossRefPubMedGoogle Scholar
  2. 2.
    Mackowiak PA. Concepts of fever. Arch Intern Med. 1998;158:1870–81.CrossRefPubMedGoogle Scholar
  3. 3.
    Baronzio GF, Della Seta R, D’Amico M, Baronzio A, Freitas I, Forzenigo G, et al. Effects of local and whole body hyperthermia on immunity. In: Baronzio GF, Hager ED, editors. Gerorgetown: Landes BioScience; 2006, p. 247–75.Google Scholar
  4. 4.
    Banchereau J, Briere F, Caux C, Davoust J, Lebecque S, Liu YJ, et al. Immunobiology of dendritic cells. Annu Rev Immunol. 2000;18:767–811.CrossRefPubMedGoogle Scholar
  5. 5.
    Ostberg JR, Kabingu E, Repasky EA. Thermal regulation of dendritic cell activation and migration from skin explants. Int J Hyperthermia. 2003;19:520–33.CrossRefPubMedGoogle Scholar
  6. 6.
    Steinman RM. The dendritic cell system and its role in immunogenicity. Annu Rev Immunol. 1991;9:271–96.CrossRefPubMedGoogle Scholar
  7. 7.
    Wang WC, Goldman LM, Schleider DM, Appenheimer MM, Subjeck JR, Repasky EA, et al. Fever-range hyperthermia enhances L-selectin-dependent adhesion of lymphocytes to vascular endothelium. J Immunol. 1998;160:961–9.PubMedGoogle Scholar
  8. 8.
    Evans SS, Wang WC, Bain MD, Burd R, Ostberg JR, Repasky EA. Fever-range hyperthermia dynamically regulates lymphocyte delivery to high endothelial venules. Blood. 2001;97:2727–33.CrossRefPubMedGoogle Scholar
  9. 9.
    Chen Q, Fisher DT, Clancy KA, Gauguet JM, Wang WC, Unger E, et al. Fever-range thermal stress promotes lymphocyte trafficking across high endothelial venules via an interleukin 6 trans-signaling mechanism. Nat Immunol. 2006;7:1299–308.CrossRefPubMedGoogle Scholar
  10. 10.
    Mace TA, Zhong L, Kilpatrick C, Zynda E, Lee CT, Capitano M, et al. Differentiation of CD8+ T cells into effector cells is enhanced by physiological range hyperthermia. J Leukoc Biol. 2011;90:951–62.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Ostberg JR, Gellin C, Patel R, Repasky EA. Regulatory potential of fever-range whole body hyperthermia on langerhans cells and lymphocytes in an antigen-dependent cellular immune response. J Immunol. 2001;167:2666–70.CrossRefPubMedGoogle Scholar
  12. 12.
    Fisher DT, Chen Q, Skitzki JJ, Muhitch JB, Zhou L, Appenheimer MM, et al. IL-6 trans-signaling licenses mouse and human tumor microvascular gateways for trafficking of cytotoxic T cells. J Clin Invest. 2011;121:3846–59.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Mace TA, Zhong L, Kokolus KM, Repasky EA. Effector CD8+ T cell IFN-γ production and cytotoxicity are enhanced by mild hyperthermia. Int J Hyperthermia. 2012;28:9–18.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Kappel M, Stadeager C, Tvede N, Galbo H, Klarlund PB. Effects of in vitro hyperthermia on natural killer cell activity, in vitro proliferative responses and blood mononuclear cell subpopulations. Clin Exp Immunol. 1991;84:175–80.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Kraybill WG, Olenki T, Evans SS, Ostberg JR, O’Leary KA, Gibbs JF, et al. A phase I study of fever-range whole body hyperthermia (FR-WBH) in patients with advanced solid tumours: correlation with mouse models. Int J Hyperthermia. 2002;18:253–66.CrossRefPubMedGoogle Scholar
  16. 16.
    Atanackovic D, Nierhaus A, Neumeier M, Hossfeld DK, Hegewisch-Becker S. 41.8 °C whole body hyperthermia as an adjunct to chemotherapy induces prolonged T cell activation in patients with various malignant diseases. Cancer Immunol Immunother. 2002;51:603–13.CrossRefPubMedGoogle Scholar
  17. 17.
    Kobayashi Y, Ito Y, Ostapenko VV, Sakai M, Matsushita N, Imai K, et al. Fever-range whole-body heat treatment stimulates antigen-specific T-cell responses in humans. Immunol Lett. 2014;162:256–61.CrossRefPubMedGoogle Scholar
  18. 18.
    Ostberg JR, Kaplan KC, Repasky EA. Induction of stress proteins in a panel of mouse tissues by fever-range whole body hyperthermia. Int J Hyperthermia. 2002;18:552–62.CrossRefPubMedGoogle Scholar
  19. 19.
    Tsan MF, Gao B. Heat shock protein and immune system. J Leukoc Biol. 2009;85:905–10.CrossRefPubMedGoogle Scholar
  20. 20.
    Breloer M, Dorner B, Moré SM, Roderian T, Fleischer B, von Bonin A. Heat shock proteins as “danger signals”: eukaryotic Hsp60 enhances and accelerates antigen-specific IFN-γ production in T cells. Eur J Immunol. 2001;31:2051–9.CrossRefPubMedGoogle Scholar
  21. 21.
    Wang Y, Gao B, Tsan MF. Induction of cytokines by heat shock proteins and concanavalin a in murine splenocytes. Cytokine. 2005;32:149–54.CrossRefPubMedGoogle Scholar
  22. 22.
    Herold MJ, McPherson KG, Reichardt HM. Glucocorticoids in T cell apoptosis and function. Cell Mol Life Sci. 2006;63:60–72.CrossRefPubMedGoogle Scholar
  23. 23.
    Elenkov IJ, Wilder RL, Chrousos GP, Vizi ES. The sympathetic nerve – an integrative interface between two supersystems: the brain and the immune system. Pharmacol Rev. 2002;52:595–638.Google Scholar
  24. 24.
    Padgett DA, Glaser R. How stress influences the immune response. Trends Immunol. 2003;24:444–8.CrossRefPubMedGoogle Scholar
  25. 25.
    Dhabhar FS, McEwen BS. Enhancing versus suppressive effects of stress hormones on skin immune function. Proc Natl Acad Sci U S A. 1999;96:109–64.CrossRefGoogle Scholar
  26. 26.
    Dhabhar FS. Effects of stress on immune function: the good, the bad, and the beautiful. Immunol Res. 2014;58:193–210.CrossRefPubMedGoogle Scholar
  27. 27.
    Rosenberg SA, Restifo NP, Young JC, Morgan RA, Dudley ME. Adoptive cell transfer: a clinical path to effective cancer immunotherapy. Nat Rev Cancer. 2008;8:299–308.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Fedorov VD, Sadelain M, Kloss CC. Novel approaches to enhance the specificity and safety of engineered T cells. Cancer J. 2014;20:160–5.CrossRefPubMedGoogle Scholar
  29. 29.
    Takayama T, Skine T, Makuuchi M, Yamasaki S, Kosuge T, Yamamoto J, et al. Adoptive immunotherapy to lower postsurgical recurrence rates of hepatocellular carcinoma: a randomized trial. Lancet. 2000;356:802–7.CrossRefPubMedGoogle Scholar
  30. 30.
    Shimizu K, Kotera Y, Aruga A, Takeshita N, Takasaki K, Yamamoto M. Clinical utilization of postoperative dendritic cell vaccine plus activated T-cell transfer in patients with intrahepatic cholangiocarcinoma. J Hepatobiliary Pancreat Sci. 2012;19:171–8.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Singapore 2016

Authors and Affiliations

  • Keishi Tanigawa
    • 1
  • Yusuke Ito
    • 1
  • Yasunobu Kobayashi
    • 1
  1. 1.Bio-Thera ClinicTokyoJapan

Personalised recommendations