Skip to main content

Combining Hyperthermia and Immunotherapy: NK Therapy and Hyperthermia

  • Chapter
  • First Online:
Hyperthermic Oncology from Bench to Bedside

Abstract

The NK cell is a major player in anti-cancer immunity, and hyperthermia augments host immunity against cancer. In cancer patients, NK cell activity is often suppressed. Therefore, when treating cancer patients with hyperthermia, it is desirable to restore the NK cell activity by co-administering a large number of highly activated NK cells that are prepared using a sophisticated cell culture strategy. This chapter describes ex vivo-expanded NK cells used in immunotherapy, the effects of hyperthermia on NK activity, and clinical applications of the combinatory therapy with hyperthermia and NK cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Deng X, Terunuma H, Nieda M, et al. Synergistic cytotoxicity of ex vivo expanded natural killer cells in combination with monoclonal antibody drugs against cancer cells. Int Immunopharmacol. 2012;14:593–605.

    Article  CAS  PubMed  Google Scholar 

  2. Berg M, Lundqvist A, McCoy P, et al. Clinical-grade ex vivo-expanded human natural killer cells upregulate activating receptors and death receptor ligands and have enhanced cytolytic activity against tumor cells. Cytotherapy. 2009;11:341–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Voskens CJ, Watanabe R, Rollins S, et al. Ex-vivo expanded human NK cells express activating receptors that mediate cytotoxicity of allogeneic and autologous cancer cell lines by direct recognition and antibody directed cellular cytotoxicity. J Exp Clin Cancer Res. 2010;29:134.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Lapteva N, Durett AG, Sun J, et al. Large-scale ex vivo expansion and characterization of natural killer cells for clinical applications. Cytotherapy. 2012;14:1131–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Fujisaki H, Kakuda H, Shimasaki N, et al. Expansion of highly cytotoxic human natural killer cells for cancer cell therapy. Cancer Res. 2009;69:4010–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Deng X, Terunuma H, Terunuma A, et al. Ex vivo-expanded natural killer cells kill cancer cells more effectively than ex vivo-expanded γδT cells or αβT cells. Int Immunopharmacol. 2014;22:486–91.

    Article  CAS  PubMed  Google Scholar 

  7. Dewan MZ, Terunuma H, Toi M, et al. Potential role of natural killer cells in controlling growth and infiltration of AIDS-associated primary effusion lymphoma cells. Cancer Sci. 2006;97:1381–7.

    Article  CAS  PubMed  Google Scholar 

  8. Terunuma H, Deng X, Dewan Z, et al. Potential role of NK cells in the induction of immune responses: implications for NK cell-based immunotherapy for cancers and viral infections. Int Rev Immunol. 2008;27:93–110.

    Article  CAS  PubMed  Google Scholar 

  9. Terunuma H, Deng X, Toki A, et al. Effects of hyperthermia on the host immune system: from NK cell-based science to clinical application. Thermal Med. 2012;28:1–9.

    Article  Google Scholar 

  10. Deng X, Ashiba K, Terunuma H, et al. Injection of ex vivo expanded NK cells activates NK cells in blood. Med Sci Dig. 2015;41:318–21 [Japanese].

    Google Scholar 

  11. Ostberg JR, Dayanc BE, Yuan M, et al. Enhancement of natural killer (NK) cell cytotoxicity by fever-range thermal stress is dependent on NKG2D function and is associated with plasma membrane NKG2D clustering and increased expression of MICA on target cells. J Leukoc Biol. 2007;82:1322–31.

    Article  CAS  PubMed  Google Scholar 

  12. Srivastava PK, Udono H, Blachere NE, Li Z. Heat shock proteins transfer peptides during antigen processing and CTL priming. Immunogenetics. 1994;39:93–8.

    Article  CAS  PubMed  Google Scholar 

  13. Binder RJ, Srivastava PK. Peptides chaperoned by heat-shock proteins are a necessary and sufficient source of antigen in the cross-priming of CD8+ T cells. Nat Immunol. 2005;6:593–9.

    Article  CAS  PubMed  Google Scholar 

  14. Takahashi T. Effects of hyperthermia and modification of thermosensitivity. Thermal Med. 2007;23:171–9.

    Article  Google Scholar 

  15. Guo J, Zhu J, Sheng X, et al. Intratumoral injection of dendritic cells in combination with local hyperthermia induces systemic antitumor effect in patients with advanced melanoma. Int J Cancer. 2007;120:2418–25.

    Article  CAS  PubMed  Google Scholar 

  16. Terunuma H, Wada A, Deng X, et al. Mild hyperthermia modulates the relative frequency of lymphocyte cell subpopulations: an increase in a cytolytic NK cell subset and a decrease in a regulatory T cell subset. Thermal Med. 2007;23:41–7.

    Article  Google Scholar 

  17. Krause SW, Gastpar R, Andreesen R, et al. Treatment of colon and lung cancer patients with ex vivo heat shock protein 70-peptide-activated, autologous natural killer cells: a clinical phase I trial. Clin Cancer Res. 2004;10:3699–707.

    Article  CAS  PubMed  Google Scholar 

  18. Iliopoulou EG, Kountourakis P, Karamouzis MV, et al. A phase I trial of adoptive transfer of allogeneic natural killer cells in patients with advanced non-small cell lung cancer. Cancer Immunol Immunother. 2010;59:1781–9.

    Article  PubMed  Google Scholar 

  19. Rizzieri DA, Storms R, Chen DF, et al. Natural killer cell-enriched donor lymphocyte infusions from A 3-6/6 HLA matched family member following nonmyeloablative allogeneic stem cell transplantation. Biol Blood Marrow Transpl. 2010;16:1107–14.

    Article  Google Scholar 

  20. Curti A, Ruggeri L, D’Addio A, et al. Successful transfer of alloreactive haploidentical KIR ligand-mismatched natural killer cells after infusion in elderly high risk acute myeloid leukemia patients. Blood. 2011;118:3273–9.

    Article  CAS  PubMed  Google Scholar 

  21. Geller MA, Cooley S, Judson PL, et al. A phase II study of allogeneic natural killer cell therapy to treat patients with recurrent ovarian and breast cancer. Cytotherapy. 2011;13:98–107.

    Article  CAS  PubMed  Google Scholar 

  22. Terunuma H, Deng X, Nishino N, et al. NK cell-based autologous immune enhancement therapy (AIET) for cancer. J Stem Cells Regen Med. 2013;9:9–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Ueda K, Aoki Y, Hachiya Y. Combination therapy combining low dose cisplatin and regional hyperthermia for treatment of progressive hormone refractory prostatic carcinoma. Thermal Med. 2007;23:95–100.

    Article  Google Scholar 

  24. Ueda K, Maeda F, Ito Y. Combined treatment with low dose chemotherapy and regional hyperthermia for progressive urothelial cancer. Thermal Med. 2011;27:109–12.

    Article  Google Scholar 

  25. Pasquie E, Kavallaris M, Andre N. Metronomic chemotherapy: new rationale for new directions. Nat Rev Clin Oncol. 2010;7:455–65.

    Article  Google Scholar 

  26. Gasser S, Orsulic S, Brown EJ, Raulet DH. The DNA damage pathway regulates innate immune system ligands for the NKG2D receptor. Nature. 2005;436:1186–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Xu X, Rao GS, Groh V, et al. Major histocompatibility complex class I-related chain A/B (MICA/B) expression in tumor tissue and serum of pancreatic cancer: role of uric acid accumulation in gemcitabine-induced MICA/B expression. BMC Cancer. 2011;11:194.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Survival statistics of Japanese association of Clinical Cancer Centers: survival rate census. https://kapweb.chiba-cancer-registry.org. Accessed 1 Dec 2015.

  29. Imai K, Matsuyama S, Miyake S, et al. Natural cytotoxic activity of peripheral-blood lymphocytes and cancer incidence: an 11-year follow-up study of a general population. Lancet. 2000;356:1795–9.

    Article  CAS  PubMed  Google Scholar 

  30. Dewan MZ, Takada M, Terunuma H, et al. Natural killer activity of peripheral-blood mononuclear cells in breast cancer patients. Biomed Pharmacother. 2009;63:703–6.

    Article  CAS  PubMed  Google Scholar 

  31. Pollock RE, Lotzová E, Stanford SD. Mechanism of surgical stress impairment of human perioperative natural killer cell cytotoxicity. Arch Surg. 1991;126:338–42.

    Article  CAS  PubMed  Google Scholar 

  32. Tai LH, Zhang J, Scott KJ, et al. Perioperative influenza vaccination reduces postoperative metastatic disease by reversing surgery-induced dysfunction in natural killer cells. Clin Cancer Res. 2013;19:5104–15.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Terunuma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Terunuma, H. et al. (2016). Combining Hyperthermia and Immunotherapy: NK Therapy and Hyperthermia. In: Kokura, S., Yoshikawa, T., Ohnishi, T. (eds) Hyperthermic Oncology from Bench to Bedside. Springer, Singapore. https://doi.org/10.1007/978-981-10-0719-4_29

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-0719-4_29

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-0717-0

  • Online ISBN: 978-981-10-0719-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics