Skip to main content

Performance Assessment of an Electrostatic Precipitator of a Coal-Fired Power Plant—A Case Study for Collecting Smaller Particles

  • Chapter
  • First Online:
Application of Thermo-fluid Processes in Energy Systems

Part of the book series: Green Energy and Technology ((GREEN))

  • 747 Accesses

Abstract

Producing sustainable clean energy is one of the key challenges in modern power generation systems. Coal-fired power plants are one of the main sources of electrical energy due to the low cost of coal compared to other fossil fuels. However, one of the major problems of the coal-fired power plant is the exhaust emission of fine particulate matter. Most of the coal power plants and other process industries generally use electrostatic precipitators (ESPs) because of their effectiveness and reliability in controlling particulate matter. The dust particles from the flue gas are separated using flow dynamics and an electrical force induced by the ESP. Baffles and plates are used to obstruct the flue gas flow and to increase residence time to force particle deposition. ESPs are the most reliable control devices to capture the fine particles and their efficiency is also high. However, the precipitator has some serious limitations when capturing smaller size dust particles, especially those less than 2.5 micron. Another drawback is the collection of dust from low-temperature flue gas. In this chapter, a computational fluid dynamics (CFD) model of flow distribution inside the ESP has been discussed which can be useful for collecting smaller particles regardless of operating temperature. A case study is presented showing a wide variety of flow simulation by inserting different shapes of baffles inside the ESP and their effect on particle collection. The collection efficiency of the particles affected by different flow distributions and the possible modifications in the existing ESPs used in the power plants are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. G. (2015). Department of Industry and Science Australian Energy Update 2015.

    Google Scholar 

  2. M.C.O. Australia, Australia’s Coal Industry.

    Google Scholar 

  3. Morawska, L., Agranovski, V., Ristovski, Z., & Jamriska, M. (2002). Effect of face velocity and the nature of aerosol on the collection of submicrometer particles by electrostatic precipitator. Indoor Air, 12, 129–137.

    Article  Google Scholar 

  4. Jaworek, A., Krupa, A., & Czech, T. (2007). Modern electrostatic devices and methods for exhaust gas cleaning: A brief review. Journal of Electrostatics, 65, 133–155.

    Article  Google Scholar 

  5. K. M. S. C A J Paulson, Electrostatic precipitation of fly ash from australian bituminous coals in January 1998.

    Google Scholar 

  6. Zhu, Q. (2003). Developments in particulate control. IEA Coal Research.

    Google Scholar 

  7. Chemithon. (2011). Chemithon Enterprise Inc. Retrieved from http://www.chemithon.com/Enviro_fluegas.html.

  8. Srinivasachar, S., Pease, B. R., Porle, K., Mauritzson, C., & Haythornthwaite, S. (1997). Ultra high efficiency ESP for fine particulate and air toxics control. In National Energy Technology Lab, Pittsburgh, PA, and Morgantown, WV (US).

    Google Scholar 

  9. Ji, J.-H., Hwang, J., Bae, G.-N., & Kim, Y.-G. (2004). Particle charging and agglomeration in DC and AC electric fields. Journal of Electrostatics, 61, 57–68.

    Article  Google Scholar 

  10. Nakajima, Y., & Sato, T. (2003). Electrostatic collection of submicron particles with the aid of electrostatic agglomeration promoted by particle vibration. Powder Technology, 135–136, 266–284.

    Article  Google Scholar 

  11. Altman, R. F., Easom, B. H., Box, C., & Harrison, W. A. (2002). Results of electrocore™ pilot testing at EC gaston steam plant. In Proceedings of Air Quality III: Mercury, Trace Elements, and Particulate Matter Conference, Arlington, VA.

    Google Scholar 

  12. Elayyan, H. S. B., Bouziane, A., & Waters, R. T. (2002). Theoretical and experimental investigation of a pulsed ESP. Journal of Electrostatics, 56, 219–234.

    Article  Google Scholar 

  13. LSR Technologies Report, Integrated system to control primary pm 2.5 from electric power plants. In Other Information: PBD: 30 June 2000, Medium: ED; Size: 9 pp.

    Google Scholar 

  14. Peukert, W., & Wadenpohl, C. (2001). Industrial separation of fine particles with difficult dust properties. Powder Technology, 118, 136–148.

    Article  Google Scholar 

  15. Lockhart, J., Weiss, O., & Hadera, I. (2001). The application of skewed gas flow technology at the Israel electric corp. MD-A Station. In 8th International conference on electrostatic precipitation.

    Google Scholar 

  16. Boyd, M. (2001). Skewed gas flow technology offers antidote to opacity derates. Power Engineering, 105.

    Google Scholar 

  17. Ojanpera, R., & Hein, A. G. (1999). Skewed gas flow technology-a method to improve precipitator performance. In Annual Meeting-Technical Section Canadian Pulp And Paper Association, Canadian Pulp & Paper Assn-Technical Section (pp. A261–A264).

    Google Scholar 

  18. Grainger, C. (2001). Ductwork changes improve ESP performance. Clean Air and Environmental Quality, 35, 43–44.

    Google Scholar 

  19. Sahin, B., & Ward-Smith, A. J. (1987). The use of perforated plates to control the flow emerging from a wide-angle diffuser, with application to electrostatic precipitator design. International Journal of Heat and Fluid Flow, 8, 124–131.

    Article  Google Scholar 

  20. Skodras, G., Kaldis, S. P., Sofialidis, D., Faltsi, O., Grammelis, P., & Sakellaropoulos, G. P. (2006). Particulate removal via electrostatic precipitators—CFD simulation. Fuel Processing Technology, 87, 623–631.

    Article  Google Scholar 

  21. Dumont, B. J., & Mudry, R. G. (2003). Computational fluid dynamic modeling of electrostatic precipitators. In Proceedings of Electric Power Conference.

    Google Scholar 

  22. Gan, G., & Riffat, S. B. (1997). Pressure loss characteristics of orifice and perforated plates. Experimental Thermal and Fluid Science, 14, 160–165.

    Article  Google Scholar 

  23. Kim, S. H., & Lee, K. W. (1999). Experimental study of electrostatic precipitator performance and comparison with existing theoretical prediction models. Journal of Electrostatics, 48, 3–25.

    Article  Google Scholar 

  24. Parker, K. R. (1997). Applied Electrostatic Precipitation. Chapman & Hall.

    Google Scholar 

  25. Qi, L., & Yuan, Y. (2013). Mechanism of the effect of alkali metal on the electrostatic precipitability of fly ash. Fuel, 107, 848–851.

    Article  MathSciNet  Google Scholar 

  26. Qi, L., & Yuan, Y. (2013). Influence of SO3 in flue gas on electrostatic precipitability of high-alumina coal fly ash from a power plant in China. Powder Technology, 245, 163–167.

    Article  Google Scholar 

  27. Thonglek, V., & TanongkiatKiatsiriroat. (2013). Improvement of electrostatic precipitator for submicron particle collection by non-thermal plasma pre-charger. International Journal of Emerging Technology and Advanced Engineering, 3(10).

    Google Scholar 

  28. Botros, M. P., & Altman, R. Integrated System to Control Primary PM 2.5 from Electric Power Plants.

    Google Scholar 

  29. Sayem, A. S. M., Khan, M. M. K., Rasul, M. G., Hassan, N. M. S., & Amanullah, M.T.O. (2015). Modelling of baffles in electrostatic precipitator (ESP) to achieve optimum flow distribution. In The 11th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics (HEFAT 2015), Kruger National Park, South Africa (p. Paper ID 1570073667).

    Google Scholar 

  30. Haque, S. M. E., Rasul, M. G., Deev, A. V., Khan, M. M. K., & Subaschandar, N. (2009). Flow simulation in an electrostatic precipitator of a thermal power plant. Applied Thermal Engineering, 29, 2037–2042.

    Article  Google Scholar 

  31. Schwab, M., & Johnson, R. (1994). Numerical design method for improving gas distribution within electrostatic precipitators. In Proceedings of the American Power Conference (pp. 882–882). Illinois Institute of Technology.

    Google Scholar 

  32. Varonos, A. A., Anagnostopoulos, J. S., & Bergeles, G. C. (2002). Prediction of the cleaning efficiency of an electrostatic precipitator. Journal of Electrostatics, 55, 111–133.

    Article  Google Scholar 

  33. Haque, S. M. E., Rasul, M. G., Khan, M. M. K., Deev, A. V., & Subaschandar, N. (2009). Influence of the inlet velocity profiles on the prediction of velocity distribution inside an electrostatic precipitator. Experimental Thermal and Fluid Science, 33, 322–328.

    Article  Google Scholar 

  34. Haque, S. M. E., Rasul, M. G., Deev, A. V., Khan, M. M. K., & Zhou, J. (2006). Numerical simulation of turbulent flow inside the electrostatic precipitator of a power plant. In International Conference on Fluid Mechanics, Miami, Florida, USA (pp. 25–30).

    Google Scholar 

  35. Haque, S. M. E., Rasul, M., Khan, M. M. K., Deev, A., & Rao, S. (2007). Numerical modelling for optimizing flow distribution inside an electrostatic precipitator. International Journal of Mathematics and Computers in Simulation, 1.

    Google Scholar 

  36. Haque, S. M. E., Rasul, M. G., & Khan, M. M. K. (2008). Modelling and simulation of particle trajectory inside an electrostatic precipitator. In 4th BSME-ASME International Conference on Thermal Engineering, Dhaka, Bangladesh.

    Google Scholar 

  37. Haque, S. M. E., Rasul, M., & Khan, M. M. K. (2010). Fine participate emission control by optimizing process parameters of an electrostatic precipitator. In Proceedings of the WSEAS International Conference, Mechanical Engineering Series, World Scientific and Engineering Academy and Society.

    Google Scholar 

  38. Haque, S. M. E. (2009). Performance study of the electrostatic precipitator of a coal fired power plant: Aspects of fine particulate emission control. Ph.D. Thesis, Faculty of Sciences, Engineering and Health, CQ University.

    Google Scholar 

  39. Sayem, A. S. M., Khan, M. M. K., Rasul, M. G., & Hasan, N. M. S. (2015). Fluid flow analysis in electrostatic precipitator of a coal fired power plant considering electrode with two different shape of baffles. In International Conference on Mechanical Engineering and Renewable Energy 2015 (ICMERE2015), Chittagong, Bangladesh (pp. ICMERE2015-PI-2285).

    Google Scholar 

  40. Deev, A. V., Rasheed, T., Welsh, M. C., Khan, M. M. K., & Rasul, M. G. (2009). Measurement of instantaneous flow velocities in a concentric reducer using particle image velocimetry: Study of scale deposition. Experimental Thermal and Fluid Science, 33, 1003–1011.

    Article  Google Scholar 

  41. Sayem, A. S. M., Khan, M. M. K., Rasul, M. G., Amanullah, M. T. O., & Hassan, N. M. S. (2015). Effects of baffles on flow distribution in an electrostatic precipitator (ESP) of a coal based power plant. In: 6th BSME International Conference on Thermal Engineering (ICTE 2014), Procedia Engineering, Dhaka, Bangladesh (p. 8).

    Google Scholar 

  42. ANSYS FLUENT 12.0 Theory Guide.

    Google Scholar 

  43. Dubois, F., & Huamo, W. (2001). New advances in computational fluid dynamics—theory, methods and applications [M], in. Beijing: Higher Education Press.

    Google Scholar 

  44. William W. Nazaroff & Lisa Alvarez-Cohen. (2017). “Electrostatic Precipitators.” Dartmouth. http://engineering.dartmouth.edu/~d30345d/courses/engs37/esps.pdf. Accessed 1.2.2017.

  45. White, H. J. (1977). Fly Ash and Furnace Gas Characteristics. Journal of the Air Pollution Control Association, 27, 114–120. http://www.tandfonline.com/doi/pdf/10.1080/00022470.1977.10470386

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. M. Sayem .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Sayem, A.S.M., Khan, M.M.K., Rasul, M.G., Hassan, N.M.S. (2018). Performance Assessment of an Electrostatic Precipitator of a Coal-Fired Power Plant—A Case Study for Collecting Smaller Particles. In: Khan, M., Chowdhury, A., Hassan, N. (eds) Application of Thermo-fluid Processes in Energy Systems. Green Energy and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-10-0697-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-0697-5_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-0695-1

  • Online ISBN: 978-981-10-0697-5

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics