Correlation Between Physicochemical Properties and Quality of Biodiesel

  • M I JahirulEmail author
  • R J Brown
  • W Senadeera
Part of the Green Energy and Technology book series (GREEN)


Biodiesel produced from renewable feedstocks represents a sustainable source of energy and will therefore play a significant role in providing the energy requirements for transportation in the near future. Biodiesel offers many benefits over conventional petroleum fuels, including the wide regional distribution of biomass feedstocks, high greenhouse gas reduction potential, biodegradability and a significant contribution to sustainability. Chemically, all biodiesels are fatty acid methyl esters (FAME), produced from raw vegetable oil and animal fat. However, clear differences in chemical structure are apparent when comparing one feedstock to the next in terms of chain length, degree of unsaturation and number of double bonds—all of which determine the fuel properties and quality of biodiesel as a diesel engine fuel. In this chapter, biodiesel feedstocks, production processes, chemical compositions, standards, physicochemical properties and in-use performance are discussed. A correlation study between the properties of biodiesel and its chemical composition is analysed using principal component analysis (PCA). The necessary data regarding the chemical composition and fuel properties of biodiesel were obtained from more than 100 papers published in recognised international journals. The PCA indicated that individual biodiesel properties have a complex correlation with the parameters of chemical composition. The average chain length and average number of double bonds are the most influential parameters that affect all biodiesel properties. The results of this analysis are presented graphically and discussed in this chapter. Therefore, this chapter will provide the reader a clearer understanding of the physicochemical properties of biodiesel.


Biodiesel Chemical composition Fuel properties PCA 



The authors wish to express their thanks for the provision of the QUTPRA scholarship, and to QUT for providing funds for conducting this research. The authors would also like to thank the Biofuel Engine Research Facility (BERF) for providing facilities to complete this study. The authors would also like to thank Australian Research Council’s Linkage Projects funding scheme (project number LP110200158) for providing support for this research.


  1. 1.
    Ahmad, M., Ullah, K., Khan, M., Ali, S., Zafar, M., & Sultana, S. (2011). Quantitative and qualitative analysis of sesame oil biodiesel. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 33, 1239–1249.CrossRefGoogle Scholar
  2. 2.
    Albuquerque, M., Machado, Y., Torres, A., Azevedo, D., Cavalcante JR, C., Firmiano, L. & Parente JR, E. (2009). Properties of biodiesel oils formulated using different biomass sources and their blends. Renewable Energy, 34, 857–859.Google Scholar
  3. 3.
    Alcantara, R., Amores, J., Canoira, L. T., Fidalgo, E., Franco, M., & Navarro, A. (2000). Catalytic production of biodiesel from soy-bean oil, used frying oil and tallow. Biomass and Bioenergy, 18, 515–527.CrossRefGoogle Scholar
  4. 4.
    Ali, Y., Hanna, M., & Cuppett, S. (1995). Fuel properties of tallow and soybean oil esters. Journal of the American Oil Chemists’ Society, 72, 1557–1564.CrossRefGoogle Scholar
  5. 5.
    Ali, Y., Hanna, M. A., & Cuppett, S. L. (1995). Fuel properties of tallow and soybean oil esters. Journal of the American Oil Chemists’ Society, 72, 1557–1564.CrossRefGoogle Scholar
  6. 6.
    Alleman, T., & Mccormick, R. L. (2006). Analysis of coconut-derived biodiesel and conventional diesel fuel samples from the Philippines. US DOE, NREL/MP-540-38643.Google Scholar
  7. 7.
    Antolın, G., Tinaut, F., Briceno, Y., Castano, V., Perez, C., & Ramırez, A. (2002). Optimisation of biodiesel production by sunflower oil transesterification. Bioresource Technology, 83, 111–114.Google Scholar
  8. 8.
    Aransiola, E., Ojumu, T., Oyekola, O., & Ikhuomoregbe, D. (2012). A study of biodiesel production from non-edible oil seeds: A comparative study. The Open Conference Proceedings Journal, M1.Google Scholar
  9. 9.
    Armas, O., Yehliu, K., & Boehman, A. L. (2010). Effect of alternative fuels on exhaust emissions during diesel engine operation with matched combustion phasing. Fuel, 89, 438–456.CrossRefGoogle Scholar
  10. 10.
    Atapour, M., & Kariminia, H.-R. (2011). Characterization and transesterification of Iranian bitter almond oil for biodiesel production. Applied Energy, 88, 2377–2381.CrossRefGoogle Scholar
  11. 11.
    Bannikov, M. (2011). Combustion and emission characteristics of Mustard biodiesel. In 6th International Advanced Technologies Symposium (IATS’11), Turkey (pp.1–5).Google Scholar
  12. 12.
    Barnwal, B., & Sharma, M. (2005). Prospects of biodiesel production from vegetable oils in India. Renewable and Sustainable Energy Reviews, 9, 363–378.CrossRefGoogle Scholar
  13. 13.
    Behçet, R. (2011). Performance and emission study of waste anchovy fish biodiesel in a diesel engine. Fuel Processing Technology, 92, 1187–1194.CrossRefGoogle Scholar
  14. 14.
    Benjumea, P., Agudelo, J., & Agudelo, A. (2008). Basic properties of palm oil biodiesel–diesel blends. Fuel, 87, 2069–2075.CrossRefGoogle Scholar
  15. 15.
    Berrios, M., Gutiérrez, M., Martín, M., & Martin, A. (2009). Application of the factorial design of experiments to biodiesel production from lard. Fuel Processing Technology, 90, 1447–1451.CrossRefGoogle Scholar
  16. 16.
    Betiku, E., & Adepoju, T. F. (2013). Methanolysis optimization of sesame (Sesamum indicum) oil to biodiesel and fuel quality characterization. International Journal of Energy and Environmental Engineering, 4, 1–8.CrossRefGoogle Scholar
  17. 17.
    Canakci, M. (2005). Performance and emissions characteristics of biodiesel from soybean oil. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 219, 915–922.Google Scholar
  18. 18.
    Canakci, M., & Sanli, H. (2008). Biodiesel production from various feedstocks and their effects on the fuel properties. Journal of Industrial Microbiology and Biotechnology, 35, 431–441.CrossRefGoogle Scholar
  19. 19.
    Canakci, M., & van Gerpen, J. H. (2003). Comparison of engine performance and emissions for petroleum diesel fuel, yellow grease biodiesel, and soybean oil biodiesel. Transactions of the ASAE, 46, 937–944.Google Scholar
  20. 20.
    Candeia, R., Silva, M., Carvalho Filho, J., Brasilino, M., Bicudo, T., Santos, I., & Souza, A. 2009. Influence of soybean biodiesel content on basic properties of biodiesel–diesel blends. Fuel, 88, 738–743.Google Scholar
  21. 21.
    Cecrle, E., Depcik, C., Duncan, A., Guo, J., Mangus, M., Peltier, E., et al. (2012). Investigation of the effects of biodiesel feedstock on the performance and emissions of a single-cylinder diesel engine. Energy & Fuels, 26, 2331–2341.CrossRefGoogle Scholar
  22. 22.
    Chhetri, A., & Watts, K. (2012). Densities of canola, jatropha and soapnut biodiesel at elevated temperatures and pressures. Fuel, 99, 210–216.CrossRefGoogle Scholar
  23. 23.
    Chhetri, A., & Watts, K. (2012). Viscosities of canola, jatropha and soapnut biodiesel at elevated temperatures and pressures. Fuel, 102, 789–794.CrossRefGoogle Scholar
  24. 24.
    Chhetri, A. B., Tango, M. S., Budge, S. M., Watts, K. C., & Islam, M. R. (2008). Non-edible plant oils as new sources for biodiesel production. International Journal of Molecular Sciences, 9, 169–180.CrossRefGoogle Scholar
  25. 25.
    Chhetri, A. B., Watts, K. C., & Islam, M. R. (2008). Waste cooking oil as an alternate feedstock for biodiesel production. Energies, 1, 3–18.CrossRefGoogle Scholar
  26. 26.
    Choudhury, S., & Bose, P. (2008). Jatropha derived Biodiesel–Its suitability as CI engine fuel. SAE Technical Paper.Google Scholar
  27. 27.
    Chung, K.-H. (2010). Transesterification of Camellia japonica and Vernicia fordii seed oils on alkali catalysts for biodiesel production. Journal of Industrial and Engineering Chemistry, 16, 506–509.CrossRefGoogle Scholar
  28. 28.
    Crabbe, E., Nolasco-Hipolito, C., Kobayashi, G., Sonomoto, K., & Ishizaki, A. (2001). Biodiesel production from crude palm oil and evaluation of butanol extraction and fuel properties. Process Biochemistry, 37, 65–71.CrossRefGoogle Scholar
  29. 29.
    Cursaru, D., Neagu, M., & Bogatu, L. (2013). Investigations on the oxidation stability of biodiesel synthesized from different vegetable oils. Revista de Chimie, 64, 438–441.Google Scholar
  30. 30.
    Dantas, M., Albuquerque, A., Barros, A., Rodrigues Filho, M., Antoniosi Filho, N., Sinfrônio, F., et al. (2011). Evaluation of the oxidative stability of corn biodiesel. Fuel, 90, 773–778.Google Scholar
  31. 31.
    Davis, J., Geller, D., Faircloth, W., & Sanders, T. (2009). Comparisons of biodiesel produced from unrefined oils of different peanut cultivars. Journal of the American Oil Chemists’ Society, 86, 353–361.CrossRefGoogle Scholar
  32. 32.
    Deligiannis, A., Papazafeiropoulou, A., Anastopoulos, G., & Zannikos, F. (2011) Waste coffee grounds as an energy feedstock. In Proceedings of the 3rd International CEMEPE & SECOTOX Conference Skiathos, ISBN, (pp. 978–960).Google Scholar
  33. 33.
    Demirbas, A. (2009). Biodiesel from waste cooking oil via base-catalytic and supercritical methanol transesterification. Energy Conversion and Management, 50, 923–927.CrossRefGoogle Scholar
  34. 34.
    Demirbas, A. (2009). Potential resources of non-edible oils for biodiesel. Energy Sources, Part B: Economics, Planning and Policy, 4, 310–314.CrossRefGoogle Scholar
  35. 35.
    Demirbaş, A. (2002). Biodiesel from vegetable oils via transesterification in supercritical methanol. Energy Conversion and Management, 43, 2349–2356.CrossRefGoogle Scholar
  36. 36.
    Dias, J. M., Alvim-Ferraz, M., & Almeida, M. F. (2009). Production of biodiesel from acid waste lard. Bioresource Technology, 100, 6355–6361.CrossRefGoogle Scholar
  37. 37.
    Do, L. D., Singh, V., Chen, L., Kibbey, T. C., Gollahalli, S. R., & Sabatini, D. A. (2011). Algae, Canola, or Palm oils—Diesel microemulsion fuels: Phase behaviors, viscosity, and combustion properties. International Journal of Green Energy, 8, 748–767.CrossRefGoogle Scholar
  38. 38.
    Dorado, M., Ballesteros, E., Arnal, J., Gomez, J., & Lopez Gimenez, F. (2003). Testing waste olive oil methyl ester as a fuel in a diesel engine. Energy & Fuels, 17, 1560–1565.CrossRefGoogle Scholar
  39. 39.
    Dos Santos, I., De Carvalho, S., Solleti, J., Ferreira de La Salles, W., Teixeira da Silva de La Salles, K., & Meneghetti, S. (2008). Studies of Terminalia catappa L. oil: Characterization and biodiesel production. Bioresource Technology, 99, 6545–6549.Google Scholar
  40. 40.
    Duncan, A. M., Ahosseini, A., McHenry, R., Depcik, C. D., Stagg-Williams, S. M., & Scurto, A. M. (2010). High-pressure viscosity of biodiesel from soybean, canola, and coconut oils. Energy & Fuels, 24, 5708–5716.CrossRefGoogle Scholar
  41. 41.
    el Diwani, G., & el Rafie, S. (2008). Modification of thermal and oxidative properties of biodiesel produced from vegetable oils. International Journal of Environmental Science and Technology, 5, 391–400.CrossRefGoogle Scholar
  42. 42.
    Encinar, J. M., Gonzalez, J. F., & Rodríguez-Reinares, A. (2005). Biodiesel from used frying oil. Variables affecting the yields and characteristics of the biodiesel. Industrial and Engineering Chemistry Research, 44, 5491–5499.CrossRefGoogle Scholar
  43. 43.
    Feitosa, F. X., Rodrigues, M. D. L., Veloso, C. B., Cavalcante Jr, C. L., Albuquerque, M. C., & De Sant’ana, H. B. (2010). Viscosities and densities of binary mixtures of coconut colza and coconut + soybean biodiesel at various temperatures. Journal of Chemical & Engineering Data, 55, 3909–3914.Google Scholar
  44. 44.
    Fröhlich, A., & Rice, B. (2005). Evaluation of Camelina sativa oil as a feedstock for biodiesel production. Industrial Crops and Products, 21, 25–31.CrossRefGoogle Scholar
  45. 45.
    Ghadge, S. V., & Raheman, H. (2005). Biodiesel production from mahua (Madhuca indica) oil having high free fatty acids. Biomass and Bioenergy, 28, 601–605.CrossRefGoogle Scholar
  46. 46.
    Giwa, S., & Ogunbona, C. (2014). Sweet almond (Prunus amygdalus” dulcis”) seeds as a potential feedstock for Nigerian Biodiesel Automotive Project. Revista Ambiente & Água, 9, 37–45.Google Scholar
  47. 47.
    Godiganur, S., Suryanarayana Murthy, C., & Reddy, R. P. (2009). 6BTA 5.9 G2-1 Cummins engine performance and emission tests using methyl ester mahua (Madhuca indica) oil/diesel blends. Renewable Energy, 34, 2172-2177.Google Scholar
  48. 48.
    Guzatto, R., de Martini, T. L., & Samios, D. (2011). The use of a modified TDSP for biodiesel production from soybean, linseed and waste cooking oil. Fuel Processing Technology, 92, 2083–2088.CrossRefGoogle Scholar
  49. 49.
    Haagenson, D. M., Brudvik, R. L., Lin, H., & Wiesenborn, D. P. (2010). Implementing an in situ alkaline transesterification method for canola biodiesel quality screening. Journal of the American Oil Chemists’ Society, 87, 1351–1358.CrossRefGoogle Scholar
  50. 50.
    Haseeb, A., Fazal, M., Jahirul, M., & Masjuki, H. (2011). Compatibility of automotive materials in biodiesel: A review. Fuel, 90, 922–931.CrossRefGoogle Scholar
  51. 51.
    Hoekman, S. K., Broch, A., Robbins, C., Ceniceros, E., & Natarajan, M. (2012). Review of biodiesel composition, properties, and specifications. Renewable and Sustainable Energy Reviews, 16, 143–169.CrossRefGoogle Scholar
  52. 52.
    Hu, J., Du, Z., Li, C., & Min, E. (2005). Study on the lubrication properties of biodiesel as fuel lubricity enhancers. Fuel, 84, 1601–1606.Google Scholar
  53. 53.
    Ikwuagwu, O., Ononogbu, I., & Njoku, O. (2000). Production of biodiesel using rubber [Hevea brasiliensis (Kunth. Muell.)] seed oil. Industrial Crops and Products, 12, 57–62.CrossRefGoogle Scholar
  54. 54.
    Islam, M. A., Brown, R. J., Brooks, P. R., Jahirul, M. I., Bockhorn, H., & Heimann, K. (2015). Investigation of the effects of the fatty acid profile on fuel properties using a multi-criteria decision analysis. Energy Conversion and Management, 98, 340–347.CrossRefGoogle Scholar
  55. 55.
    Jahirul, M., Brown, R., Senadeera, W., O’hara, I., & Ristovski, Z. (2013a). The use of artificial neural networks for identifying sustainable biodiesel feedstocks. Energies, 6, 3764.Google Scholar
  56. 56.
    Jahirul, M. I., Brown, J. R., Senadeera, W., Ashwath, N., Laing, C., Leski-Taylor, J., et al. (2013). Optimisation of bio-oil extraction process from beauty leaf (calophyllum inophyllum) oil seed as a second generation biodiesel source. Procedia Engineering, 56, 619–624.CrossRefGoogle Scholar
  57. 57.
    Jahirul, M. I., Brown, R. J., Senadeera, W., O’Hara, I. M., & Ristovski, Z. D. (2013). The use of artificial neural networks for identifying sustainable biodiesel feedstocks. Energies, 6, 3764–3806.CrossRefGoogle Scholar
  58. 58.
    Jahirul, M. I., Koh, W., Brown, R. J., Senadeera, W., O’Hara, I., & Moghaddam, L. (2014). Biodiesel production from non-edible beauty leaf (Calophyllum inophyllum) oil: Process optimization using response surface methodology (RSM). Energies, 7, 5317–5331.CrossRefGoogle Scholar
  59. 59.
    Jahirul, M. I., Masjuki, H., Saidur, R., Kalam, M., Jayed, M., & Wazed, M. (2010). Comparative engine performance and emission analysis of CNG and gasoline in a retrofitted car engine. Applied Thermal Engineering, 30, 2219–2226.CrossRefGoogle Scholar
  60. 60.
    Jain, S., & Sharma, M. (2012). Application of thermogravimetric analysis for thermal stability of Jatropha Curcas biodiesel. Fuel, 93, 252–257.CrossRefGoogle Scholar
  61. 61.
    Jayed, M., Masjuki, H., Saidur, R., Kalam, M., & Jahirul, M. I. (2009). Environmental aspects and challenges of oilseed produced biodiesel in Southeast Asia. Renewable and Sustainable Energy Reviews, 13, 2452–2462.CrossRefGoogle Scholar
  62. 62.
    Jham, G. N., Moser, B. R., Shah, S. N., Holser, R. A., Dhingra, O. D., Vaughn, S. F., et al. (2009). Wild Brazilian mustard (Brassica juncea L.) seed oil methyl esters as biodiesel fuel. Journal of the American Oil Chemists’ Society, 86, 917–926.CrossRefGoogle Scholar
  63. 63.
    Kalam, M., & Masjuki, H. (2002). Biodiesel from palmoil—an analysis of its properties and potential. Biomass and Bioenergy, 23, 471–479.CrossRefGoogle Scholar
  64. 64.
    Kalam, M. A., & Masjuki, H. H. (2002). Biodiesel from palmoil—An analysis of its properties and potential. Biomass and Bioenergy, 23, 471–479.CrossRefGoogle Scholar
  65. 65.
    Kalligeros, S., Zannikos, F., Stournas, S., Lois, E., Anastopoulos, G., Teas, C., et al. (2003). An investigation of using biodiesel/marine diesel blends on the performance of a stationary diesel engine. Biomass and Bioenergy, 24, 141–149.CrossRefGoogle Scholar
  66. 66.
    Kapilan, N., & Reddy, R. (2008). Evaluation of methyl esters of mahua oil (Madhuca indica) as diesel fuel. Journal of the American Oil Chemists’ Society, 85, 185–188.CrossRefGoogle Scholar
  67. 67.
    Karavalakis, G., Stournas, S., & Bakeas, E. (2009). Light vehicle regulated and unregulated emissions from different biodiesels. Science of the Total Environment, 407, 3338–3346.CrossRefGoogle Scholar
  68. 68.
    Kaya, C., Hamamci, C., Baysal, A., Akba, O., Erdogan, S., & Saydut, A. (2009). Methyl ester of peanut (Arachis hypogea L.) seed oil as a potential feedstock for biodiesel production. Renewable Energy, 34, 1257–1260.CrossRefGoogle Scholar
  69. 69.
    Kinast, J. (2003). Production of Biodiesels from Multiple Feedstocks and Properties of Biodiesels and Biodiesel/Diesel Blends. Final Report, Report 1 in a Series of 6. National Renewable Energy Lab., Golden, CO, US.Google Scholar
  70. 70.
    Knothe, G. (2005). Dependence of biodiesel fuel properties on the structure of fatty acid alkyl esters. Fuel Processing Technology, 86, 1059–1070.CrossRefGoogle Scholar
  71. 71.
    Knothe, G. (2008). “Designer” biodiesel: Optimizing fatty ester composition to improve fuel properties. Energy & Fuels, 22, 1358–1364.CrossRefGoogle Scholar
  72. 72.
    Knothe, G., & Steidley, K. R. (2005). Kinematic viscosity of biodiesel fuel components and related compounds. Influence of compound structure and comparison to petrodiesel fuel components. Fuel, 84, 1059–1065.CrossRefGoogle Scholar
  73. 73.
    Koçak, M. S., Ileri, E., & Utlu, Z. (2007). Experimental study of emission parameters of biodiesel fuels obtained from canola, hazelnut, and waste cooking oils. Energy & Fuels, 21, 3622–3626.CrossRefGoogle Scholar
  74. 74.
    Kousoulidou, M., Fontaras, G., Ntziachristos, L., & Samaras, Z. (2010). Biodiesel blend effects on common-rail diesel combustion and emissions. Fuel, 89, 3442–3449.CrossRefGoogle Scholar
  75. 75.
    Kumar, G., Kumar, D., Singh, S., Kothari, S., Bhatt, S., & Singh, C. P. (2010). Continuous low cost transesterification process for the production of coconut biodiesel. Energies, 3, 43–56.CrossRefGoogle Scholar
  76. 76.
    Kumar Tiwari, A., Kumar, A., & Raheman, H. (2007). Biodiesel production from jatropha oil (Jatropha curcas) with high free fatty acids: An optimized process. Biomass and Bioenergy, 31, 569–575.Google Scholar
  77. 77.
    Lapuerta, M., Herreros, J. M., Lyons, L. L., García-Contreras, R., & Briceño, Y. (2008). Effect of the alcohol type used in the production of waste cooking oil biodiesel on diesel performance and emissions. Fuel, 87, 3161–3169.CrossRefGoogle Scholar
  78. 78.
    Lebedevas, S., & Vaicekauskas, A. (2006). Research into the application of biodiesel in the transport sector of Lithuania. Transport, 21, 80–87.Google Scholar
  79. 79.
    Lebedevas, S., Vaicekauskas, A., Lebedeva, G., Makareviciene, V., Janulis, P., & Kazancev, K. (2006). Use of waste fats of animal and vegetable origin for the production of biodiesel fuel: quality, motor properties, and emissions of harmful components. Energy & Fuels, 20, 2274–2280.CrossRefGoogle Scholar
  80. 80.
    Lee, K.-T., Foglia, T. A., & Chang, K.-S. (2002). Production of alkyl ester as biodiesel from fractionated lard and restaurant grease. Journal of the American Oil Chemists’ Society, 79, 191–195.CrossRefGoogle Scholar
  81. 81.
    Lin, B.-F., Huang, J.-H., & Huang, D.-Y. (2009). Experimental study of the effects of vegetable oil methyl ester on DI diesel engine performance characteristics and pollutant emissions. Fuel, 88, 1779–1785.CrossRefGoogle Scholar
  82. 82.
    Lin, C.-Y., & Li, R.-J. (2009). Engine performance and emission characteristics of marine fish-oil biodiesel produced from the discarded parts of marine fish. Fuel Processing Technology, 90, 883–888.CrossRefGoogle Scholar
  83. 83.
    Lin, L., Cunshan, Z., Vittayapadung, S., Xiangqian, S., & Mingdong, D. (2011). Opportunities and challenges for biodiesel fuel. Applied Energy, 88, 1020–1031.CrossRefGoogle Scholar
  84. 84.
    Loh, S.-K., Chew, S.-M., & Choo, Y.-M. (2006). Oxidative stability and storage behavior of fatty acid methyl esters derived from used palm oil. Journal of the American Oil Chemists’ Society, 83, 947–952.CrossRefGoogle Scholar
  85. 85.
    Luque, R., Herrero-Davila, L., Campelo, J. M., Clark, J. H., Hidalgo, J. M., Luna, D., et al. (2008). Biofuels: A technological perspective. Energy & Environmental Science, 1, 542–564.CrossRefGoogle Scholar
  86. 86.
    Miller, R., Schmidt, G., & Shindell, D. (2006). Forced annular variations in the 20th century intergovernmental panel on climate change fourth assessment report models. Journal of Geophysical Research: Atmospheres, 111.Google Scholar
  87. 87.
    Moraes, M. S. A., Krause, L. C., da Cunha, M. E., Faccini, C. S., de Menezes, E. W., Veses, R. C., et al. (2008). Tallow biodiesel: Properties evaluation and consumption tests in a diesel engine. Energy & Fuels, 22, 1949–1954.CrossRefGoogle Scholar
  88. 88.
    Moser, B. R. (2008). Influence of blending canola, palm, soybean, and sunflower oil methyl esters on fuel properties of biodiesel. Energy & Fuels, 22, 4301–4306.CrossRefGoogle Scholar
  89. 89.
    Moser, B. R. (2011). Biodiesel production, properties, and feedstocks. Biofuels. Springer.Google Scholar
  90. 90.
    Moser, B. R. (2012). Preparation of fatty acid methyl esters from hazelnut, high-oleic peanut and walnut oils and evaluation as biodiesel. Fuel, 92, 231–238.CrossRefGoogle Scholar
  91. 91.
    Moser, B. R., & Vaughn, S. F. (2010). Evaluation of alkyl esters from Camelina sativa oil as biodiesel and as blend components in ultra low-sulfur diesel fuel. Bioresource Technology, 101, 646–653.CrossRefGoogle Scholar
  92. 92.
    Nakpong, P., & Wootthikanokkhan, S. (2010). High free fatty acid coconut oil as a potential feedstock for biodiesel production in Thailand. Renewable Energy, 35, 1682–1687.CrossRefGoogle Scholar
  93. 93.
    Ng, H. K., & Gan, S. (2010). Combustion performance and exhaust emissions from the non-pressurised combustion of palm oil biodiesel blends. Applied Thermal Engineering, 30, 2476–2484.CrossRefGoogle Scholar
  94. 94.
    Nogueira Jr, C. A., Feitosa, F. X., Fernandes, F. A., Santiago, R. L. S., & De Sant’ana, H. B. (2010). Densities and viscosities of binary mixtures of babassu biodiesel + cotton seed or soybean biodiesel at different temperatures. Journal of Chemical & Engineering Data, 55, 5305–5310.Google Scholar
  95. 95.
    Öner, C., & Altun, Ş. (2009). Biodiesel production from inedible animal tallow and an experimental investigation of its use as alternative fuel in a direct injection diesel engine. Applied Energy, 86, 2114–2120.CrossRefGoogle Scholar
  96. 96.
    Özcanlı, M., Keskin, A., & Aydın, K. (2011). Biodiesel production from terebinth (Pistacia terebinthus) oil and its usage in diesel engine. International Journal of Green Energy, 8, 518–528.Google Scholar
  97. 97.
    Park, J.-Y., Kim, D.-K., Lee, J.-P., Park, S.-C., Kim, Y.-J., & Lee, J.-S. (2008). Blending effects of biodiesels on oxidation stability and low temperature flow properties. Bioresource Technology, 99, 1196–1203.CrossRefGoogle Scholar
  98. 98.
    Pereira, R. G., Oliveira, C. D., Oliveira, J. L., Oliveira, P. C. P., Fellows, C. E., & Piamba, O. E. (2007). Exhaust emissions and electric energy generation in a stationary engine using blends of diesel and soybean biodiesel. Renewable Energy, 32, 2453–2460.CrossRefGoogle Scholar
  99. 99.
    Pérez, Á., Casas, A., Fernández, C. M., Ramos, M. J., & Rodríguez, L. (2010). Winterization of peanut biodiesel to improve the cold flow properties. Bioresource Technology, 101, 7375–7381.CrossRefGoogle Scholar
  100. 100.
    Phan, A. N., & Phan, T. M. (2008). Biodiesel production from waste cooking oils. Fuel, 87, 3490–3496.CrossRefGoogle Scholar
  101. 101.
    Puhan, S., Jegan, R., Balasubbramanian, K., & Nagarajan, G. (2009). Effect of injection pressure on performance, emission and combustion characteristics of high linolenic linseed oil methyl ester in a DI diesel engine. Renewable Energy, 34, 1227–1233.CrossRefGoogle Scholar
  102. 102.
    Qi, D., Geng, L., Chen, H., Bian, Y., Liu, J., & Ren, X. (2009). Combustion and performance evaluation of a diesel engine fueled with biodiesel produced from soybean crude oil. Renewable Energy, 34, 2706–2713.CrossRefGoogle Scholar
  103. 103.
    Radha, K., & Manikandan, G. (2011). Novel production of biofuels from neem oil. In World Renewable Energy Congress–Sweden, Bioenergy Technology, Linkoping, Sweden (pp. 8–13).Google Scholar
  104. 104.
    Ragit, S., Mohapatra, S., Kundu, K., & Gill, P. (2011). Optimization of neem methyl ester from transesterification process and fuel characterization as a diesel substitute. Biomass and Bioenergy, 35, 1138–1144.CrossRefGoogle Scholar
  105. 105.
    Rahman, M., Pourkhesalian, A., Jahirul, M., Stevanovic, S., Pham, P., Wang, H., et al. (2014). Particle emissions from biodiesels with different physical properties and chemical composition. Fuel, 134, 201–208.CrossRefGoogle Scholar
  106. 106.
    Rajendra, M., Jena, P. C., & Raheman, H. (2009). Prediction of optimized pretreatment process parameters for biodiesel production using ANN and GA. Fuel, 88, 868–875.CrossRefGoogle Scholar
  107. 107.
    Ramadhas, A. S., Jayaraj, S., & Muraleedharan, C. (2005). Biodiesel production from high FFA rubber seed oil. Fuel, 84, 335–340.Google Scholar
  108. 108.
    Ramalho, E., Carvalho Filho, J., Albuquerque, A., De Oliveira, S., Cavalcanti, E., Stragevitch, L., et al. (2012). Low temperature behavior of poultry fat biodiesel: diesel blends. Fuel, 93, 601–605.Google Scholar
  109. 109.
    Ramos, M. J., Fernández, C. M., Casas, A., Rodríguez, L., & Pérez, Á. (2009). Influence of fatty acid composition of raw materials on biodiesel properties. Bioresource Technology, 100, 261–268.CrossRefGoogle Scholar
  110. 110.
    Rashid, U., & Anwar, F. (2008). Production of biodiesel through base-catalyzed transesterification of safflower oil using an optimized protocol. Energy & Fuels, 22, 1306–1312.CrossRefGoogle Scholar
  111. 111.
    Rashid, U., Anwar, F., & Knothe, G. (2009). Evaluation of biodiesel obtained from cottonseed oil. Fuel Processing Technology, 90, 1157–1163.CrossRefGoogle Scholar
  112. 112.
    Rashid, U., Anwar, F., Moser, B. R., & Ashraf, S. (2008). Production of sunflower oil methyl esters by optimized alkali-catalyzed methanolysis. Biomass and Bioenergy, 32, 1202–1205.CrossRefGoogle Scholar
  113. 113.
    Reyes, J., & Sepulveda, M. (2006). PM-10 emissions and power of a diesel engine fueled with crude and refined biodiesel from salmon oil. Fuel, 85, 1714–1719.CrossRefGoogle Scholar
  114. 114.
    Rodrigues Jr, J. D. A., Cardoso, F. D. P., Lachter, E. R., Estevão, L. R., Lima, E., & Nascimento, R. S. (2006). Correlating chemical structure and physical properties of vegetable oil esters. Journal of the American Oil Chemists’ Society, 83, 353–357.Google Scholar
  115. 115.
    Royon, D., Daz, M., Ellenrieder, G., & Locatelli, S. (2007). Enzymatic production of biodiesel from cotton seed oil using t-butanol as a solvent. Bioresource Technology, 98, 648–653.CrossRefGoogle Scholar
  116. 116.
    Sahoo, P., Das, L., Babu, M., & Naik, S. (2007). Biodiesel development from high acid value polanga seed oil and performance evaluation in a CI engine. Fuel, 86, 448–454.CrossRefGoogle Scholar
  117. 117.
    Samios, D., Pedrotti, F., Nicolau, A., Reiznautt, Q., Martini, D., & Dalcin, F. (2009). A transesterification double step process—TDSP for biodiesel preparation from fatty acids triglycerides. Fuel Processing Technology, 90, 599–605.CrossRefGoogle Scholar
  118. 118.
    Sanford, S. D., White, J. M., Shah, P. S., Wee, C., Valverde, M. A., & Meier, G. R. (2009). Feedstock and biodiesel characteristics report. Renewable Energy Group, 416.Google Scholar
  119. 119.
    Sardar, N., Ahmad, M., Khan, M. A., Ali, S., Zafar, M., Khalid, N., et al. (2011). Prospects and potential of non edible neem oil biodiesel based on physicochemical characterization. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 33, 1422–1430.CrossRefGoogle Scholar
  120. 120.
    Sarin, R., Sharma, M., Sinharay, S., & Malhotra, R. (2007). Jatropha–palm biodiesel blends: an optimum mix for Asia. Fuel, 86, 1365–1371.CrossRefGoogle Scholar
  121. 121.
    Schwab, A., Bagby, M., & Freedman, B. (1987). Preparation and properties of diesel fuels from vegetable oils. Fuel, 66, 1372–1378.CrossRefGoogle Scholar
  122. 122.
    Senatore, A., Cardone, M., Rocco, V., & Prati, M. V. (2000). A comparative analysis of combustion process in DI diesel engine fueled with biodiesel and diesel fuel. SAE Technical Paper.Google Scholar
  123. 123.
    Serdari, A., Fragioudakis, K., Teas, C., Sakellaropoulos, F., Zannikos, F., Stournas, S., et al. (1998). Adding biodiesel corn oil and sunflower oil to diesel fuel: the impact on the performance of conventional road vehicles. Journal of the Institute of Energy, 71, 126–136.Google Scholar
  124. 124.
    Shah, S. N., Iha, O. K., Alves, F. C., Sharma, B. K., Erhan, S. Z., & Suarez, P. A. (2013). Potential application of turnip oil (raphanus sativus l.) for biodiesel production: Physical-chemical properties of neat oil, biofuels and their blends with ultra-low sulphur diesel (ULSD). BioEnergy Research, 6, 841–850.CrossRefGoogle Scholar
  125. 125.
    Singh, R., & Padhi, S. K. (2009). Characterization of Jatropha oil for the preparation of biodiesel. Natural Product Radiance, 8, 127–132.Google Scholar
  126. 126.
    Singh, S., & Singh, D. (2010). Biodiesel production through the use of different sources and characterization of oils and their esters as the substitute of diesel: A review. Renewable and Sustainable Energy Reviews, 14, 200–216.CrossRefGoogle Scholar
  127. 127.
    Sinha, S., Agarwal, A. K., & Garg, S. (2008). Biodiesel development from rice bran oil: Transesterification process optimization and fuel characterization. Energy Conversion and Management, 49, 1248–1257.CrossRefGoogle Scholar
  128. 128.
    Sivalakshmi, S., & Balusamy, T. (2012). Influence of ethanol addition on a diesel engine fuelled with neem oil methyl ester. International Journal of Green Energy, 9, 218–228.CrossRefGoogle Scholar
  129. 129.
    Soriano Jr, N. U., & Narani, A. (2012). Evaluation of biodiesel derived from Camelina sativa oil. Journal of the American Oil Chemists’ Society, 89, 917–923.Google Scholar
  130. 130.
    Sun, Y.-Q., Chen, B.-S., Zeng, G., Wang, J., Fang, J.-H., Xiong, W., et al. (2008). Research of low temperature properties of peanut oil and peanut biodiesel. Internal Combustion Engines, 3, 018.Google Scholar
  131. 131.
    Tan, R. R., Culaba, A. B., & Purvis, M. R. (2004). Carbon balance implications of coconut biodiesel utilization in the Philippine automotive transport sector. Biomass and Bioenergy, 26, 579–585.CrossRefGoogle Scholar
  132. 132.
    Tang, H., Salley, S. O., & Simon Ng, K. (2008). Fuel properties and precipitate formation at low temperature in soy-, cottonseed-, and poultry fat-based biodiesel blends. Fuel, 87, 3006–3017.CrossRefGoogle Scholar
  133. 133.
    Todaka, M., Kowhakul, W., Masamoto, H., Shigematsu, M., & Onwona-Agyeman, S. (2013). Thermal decomposition of biodiesel fuels produced from rapeseed, jatropha, and coffee oils with different alcohols. Journal of Thermal Analysis and Calorimetry, 113, 1355–1361.CrossRefGoogle Scholar
  134. 134.
    Vedaraman, N., Puhan, S., Nagarajan, G., & Velappan, K. (2011). Preparation of palm oil biodiesel and effect of various additives on NOx emission reduction in B20: An experimental study. International Journal of Green Energy, 8, 383–397.CrossRefGoogle Scholar
  135. 135.
    Wang, L.-B., Yu, H.-Y., He, X.-H., & Liu, R.-Y. (2012). Influence of fatty acid composition of woody biodiesel plants on the fuel properties. Journal of Fuel Chemistry and Technology, 40, 397–404.CrossRefGoogle Scholar
  136. 136.
    Wu, F., Wang, J., Chen, W., & Shuai, S. (2008). Effects of different biodiesels and their blends with oxygenated additives on emissions from a diesel engine. SAE Technical Paper, 008-01-1812.Google Scholar
  137. 137.
    Wu, X., & Leung, D. Y. (2011). Optimization of biodiesel production from camelina oil using orthogonal experiment. Applied Energy, 88, 3615–3624.CrossRefGoogle Scholar
  138. 138.
    Wyatt, V. T., Hess, M. A., Dunn, R. O., Foglia, T. A., Haas, M. J., & Marmer, W. N. (2005). Fuel properties and nitrogen oxide emission levels of biodiesel produced from animal fats. Journal of the American Oil Chemists’ Society, 82, 585–591.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Biofuel Engine Research Facility (BERF), Science and Engineering FacultyQueensland University of Technology (QUT)BrisbaneAustralia

Personalised recommendations