Skip to main content

Study of Point Spread Function of Astronomical Object Imaging

  • Conference paper
  • First Online:
Information Science and Applications (ICISA) 2016

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 376))

  • 4456 Accesses

Abstract

The research of point spread function (PSF) of astronomical object imaging is very important to the astronomical image restoration. In this paper, the simulated atmospheric turbulent phase screen, the short exposure PSF and long exposure PSF during the astronomical object imaging are studied. One novel Gaussian process move-and-superposition model for representing the final astronomical object long exposure PSF formation is proposed. The proposed model obtains more accurate final PSF of astronomical object imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Osborn, J., Wilson, R., Butterley, T, Shepherd, H., Sarazin, M.: Profiling the Surface Layer of Optical Turbulence with Slodar. Monthly Notices of the Royal Astronomical Society 406, 1405–1408 (2010)

    Google Scholar 

  2. Egner, S.E., Masciadri, E.: A G-SCIDAR for Ground-Layer Turbulence Measurements at High Vertical Resolution. Publications of the Astronomical Society of the Pacific 119, 1441–1448 (2007)

    Article  Google Scholar 

  3. Roddier, F.: The effects of atmospheric turbulence in optical astronomy. In: Wolf, E. (ed.) Progress in Optics, pp. 281–376. North-Holland, Amsterdam (1981)

    Google Scholar 

  4. McGlamery, B.L.: Computer simulation studies of compensation of turbulence degraded images. In: Image Processing Proceedings of SPIE 74, vol. 225, pp. 225–233 (1976)

    Google Scholar 

  5. Welsh, B.M.: A fourier-series-based atmospheric phase screen generator for simulating nonisoplanatic geometries and temporal evolution. In: Proceedings of SPIE 3125, Propagation and Imaging through the Atmosphere, vol. 327, pp. 327–338 (1997)

    Google Scholar 

  6. Sedmak, G.: Implementation of Fast-Fourier-Transform-Based Simulations of Extra-Large Atmospheric Phase and Scintillation Screens. Applied Optics 43, 4527–4538 (2004)

    Article  Google Scholar 

  7. Roddier, N.: Atmospheric Wave Front Simulation Using Zernike Polynomials. Optical Engineering 29, 1174–1180 (1990)

    Article  Google Scholar 

  8. Von Karman, T.: Progress in the Statistical Theory of Turbulence. Proceedings of the National Academy of Sciences USA 34, 530–539 (1948)

    Article  MathSciNet  MATH  Google Scholar 

  9. Taylor, G.I.: The Spectrum of Turbulence. Proceedings of the Royal Society of London A164, 476–490 (1938)

    MATH  Google Scholar 

  10. Zaman, K.B.M.Q., Hussain, A.K.M.F.: Taylor Hypothesis and Large-Scale Coherent Structures. Journal of Fluid Mechanics 112, 379–396 (1981)

    Article  Google Scholar 

  11. Fried, D.L.: Optical Resolution through a Randomly Inhomogeneous Medium for Very Long and Very Short Exposures. Journal of the Optical Society of America A 56, 1372–1379 (1966)

    Article  Google Scholar 

  12. Knox, K.T., Thompson, B.J.: Recovery of images from atmospherically degraded short-exposure photographs. The Astrophysical Journal 193, L45–L48 (1974)

    Article  Google Scholar 

  13. Veran, J.-P., Rigaut, F., Maıtre, H., Rouan, D.: Estimation of the Adaptive Optics Long-Exposure Point-Spread Function Using Control Loop Data. Opt. Soc. of Am. 14, 3057–3069 (1997)

    Article  Google Scholar 

  14. Marino, J.: Long exposure point spread function estimation from solar adaptive optics loop data. Ph.D. dissertation, New Jersey Institute of Technology (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Yu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this paper

Cite this paper

Yu, J., Yin, Q., Guo, P. (2016). Study of Point Spread Function of Astronomical Object Imaging. In: Kim, K., Joukov, N. (eds) Information Science and Applications (ICISA) 2016. Lecture Notes in Electrical Engineering, vol 376. Springer, Singapore. https://doi.org/10.1007/978-981-10-0557-2_39

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-0557-2_39

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-0556-5

  • Online ISBN: 978-981-10-0557-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics