Multimedia Management Services Based on User Participation with Collaborative Tagging

  • JiSoo Park
  • Kyeong Won Park
  • Yeonsang Yun
  • Mucheol Kim
  • Seungmin Rho
  • Ka Lok Man
  • Woon Kian Chong
Conference paper

Abstract

As Internet technology has rapidly developed, the amount of multimedia content on the Web has expanded exponentially. Collaborative tagging, namely folksonomy, is emerging to promote user participation in generating and distributing active content. This could be significant evidence for categorizing dynamic multimedia content. For that reason, we proposed an efficient multimedia management system based on collaborative tagging. Our system suggests the candidates, with collaborative filtering for describing and categorizing the multimedia content.

Keywords

Crowdsourcing Folksonomy Metadata Multimedia content management Recommendation system Web 2.0 

References

  1. 1.
    World Wide Web: proposal for a hypertexts project [Online]. Available: http://w3.org/Proposal.html
  2. 2.
    Song Y, Zhang L, Giles CL (2011) Automatic tag recommendation algorithms for social recommender systems. ACM Trans Web 5(1):1–31CrossRefGoogle Scholar
  3. 3.
    Kim M, Rho S (2015) Dynamic knowledge management from multiple sources in crowdsourcing environments. New Rev Hypermedia, May 2015, pp 1–13Google Scholar
  4. 4.
    Park J, Park K, Yun Y, Kim M, Rho S, Man K, Chong W (2015) Efficient multimedia contents management system with tag recommendations. In: Lecture notes in engineering and computer science: proceedings of the international multiconference of engineers and computer scientists 2015, IMECS 2015, 18–20 Mar 2015, Hong Kong, pp 737–738Google Scholar
  5. 5.
    Kim M, Park S, Joo W, Choi K, Jeong Y, Kim Y (2013) Tag based collaborative Knowledge management system with crowdsourcing. J Internet Technol 14(5):859–866Google Scholar
  6. 6.
    Xu Z, Fu Y, Mao J, Su D (2006) Towards the semantic web: collaborative tag suggestions. In: Proceedings of the collaborative web tagging workshop at WWW2006, 23–26 May 2006, Edinburgh, Scotland, pp 1–8Google Scholar
  7. 7.
    Shepitsen A, Gemmell J, Mobasher B, Burke R (2008) Personalized recommendation in social tagging systems using hierarchical clustering. In: Proceedings of the 2008 ACM conference on recommender systems, RECSYS 2008, 23–25 Oct 2008, Lausanne, Switzerland, pp 259–266Google Scholar
  8. 8.
    Kim M, Park SO (2013) Group affinity based social trust model for an intelligent movie recommender system. Multimedia Tools Appl 64(2):505–516CrossRefGoogle Scholar
  9. 9.
    Kang J (2012) User-centered innovation by crowdsourcing—interface and interaction attribute for motivation and collaboration. Digit Des Soc 35(1):557–565Google Scholar
  10. 10.
    Nam T, Lee S (2010) Study on the semantic extension of the concept of metadata. Korean Soc Libr Inf Sci 44(4):373–393Google Scholar
  11. 11.
    Hong S, Lim Y, Lim H (2015) A study on the meta data in video file of smartphone. In: Proceedings of Korean Institute of Information Technology Summer Conference 2015, 11–13 Jun 2015, Chungju-si, Korea, pp 329–331Google Scholar
  12. 12.
    The rise of crowdsourcing [Online]. Available: www.wired.com/wired/archive/14.06/crowds.html
  13. 13.
    Kwon H, Seo S (2011) Crowdsourcing case studies and implications for open innovation. Korea Technol Innov Soc 150–160Google Scholar
  14. 14.
    Won JH, Lee J, Park H (2013) A tag clustering and recommendation method for photo categorization. J Korean Soc Internet Inf 14(2):1–13Google Scholar
  15. 15.
    Sinclair J, Cardew-Hall M (2008) The folksonomy tag cloud: when is it useful? J Inf Sci 34(1):15–29CrossRefGoogle Scholar
  16. 16.
    Sigurbjörnsson B, Zwol RV (2008) Flickr tag recommendation based on collective knowledge. In: Proceedings of the 17th international conference on World Wide Web, WWW 2008, 21–25 Apr 2008, Beijing, China, pp 327–336Google Scholar
  17. 17.
    Jäschke R, Marinho L, Hotho A, Schmidt-Thieme L, Stumme G (2007) Tag recommendations in folksonomies. In: Proceedings of the European conference on principles and practice of knowledge discovery in databases, PKDD 2007, 17–21 Sept 2007, pp 506–514 Google Scholar

Copyright information

© Springer Science+Business Media Singapore 2016

Authors and Affiliations

  • JiSoo Park
    • 1
  • Kyeong Won Park
    • 1
  • Yeonsang Yun
    • 1
  • Mucheol Kim
    • 1
  • Seungmin Rho
    • 1
  • Ka Lok Man
    • 2
  • Woon Kian Chong
    • 3
  1. 1.Department of MultimediaSungkyul UniversityAnyangKorea
  2. 2.Computer Science and Software EngineeringXi’an Jiaotong-Liverpool UniversitySuzhouChina
  3. 3.International Business School Suzhou (IBSS)Xi’an Jiaotong-Liverpool UniversitySuzhouChina

Personalised recommendations