Exploring Critical Success Factors of Mobile Recommendation Systems: The End User Perspective

  • Yan Sun
  • Woon Kian Chong
  • Ka Lok Man
  • Seungmin Rho
  • Dejun Xie
Conference paper


This study is intended to critically explore key factors for the user experience of mobile recommendations, evaluate the findings, and use the generated critical success factors (CSFs) to propose a framework to assist in the Chinese mobile marketplace. The proposed framework provides a guideline for academics and practitioners and highlights the significant role of each factor in developing and sustaining effective mobile recommendation systems practice. The findings can help managers to derive a better understanding and measurement of mobile marketing activities that appropriately balance between traditional and mobile marketing practices. At the same time, the CSFs can be integrated into the companies to determine the level of marketing performance in mobile marketplace.


E-commerce Mobile recommendation systems Recommendation systems Smart phones User experience User acceptance 


  1. 1.
    Pathak B, Garfinkel R, Gopal R, Venkatesan R, Yin F (2010) Empirical analysis of the impact of recommender systems on sales. J Manage Inf Syst 27(2):159–188CrossRefGoogle Scholar
  2. 2.
    Park DH, Kim HK, Choi IY, Kim JK (2012) A literature review and classification of recommender systems research. Expert Syst Appl 40:10059–10072CrossRefGoogle Scholar
  3. 3.
    Bobadilla J, Ortega F, Hernando A, Gutierrez A (2013) Recommender systems survey. Knowl-Based Syst 46:109Google Scholar
  4. 4.
    Konstan J, Riedl J (2012) Recommender systems: from algorithms to user experience. User Model User-Adap Inter 22(1/2):101–123CrossRefGoogle Scholar
  5. 5.
    Gallego D, Woerndl W, Huecas G (2013) Evaluating the impact of proactivity in the user experience of a context-aware restaurant recommender for Android smartphones. J Syst Archit 59(9):748Google Scholar
  6. 6.
    Shani G, Gunawardana A (2013) Tutorial on application-oriented evaluation of recommendation system. AI Commun 26(2):225–236MathSciNetGoogle Scholar
  7. 7.
    Liu J, Zhou T, Zhang Z, Yang Z, Liu C, Li W (2014) Promoting cold-start items in recommender systems;
  8. 8.
    Aldrich SE (2014) Recommender systems in commercial use. AI Mag 32(3):28–34Google Scholar
  9. 9.
    Hostler RE, Yoon VY, Guimaraes T (2012) Recommendation agent impact on consumer online shopping: the movie magic case study. Expert Syst Appl 39(3):2989 (2012)Google Scholar
  10. 10.
    Pu P, Li C, Kumar P (2008) Evaluating product search and recommender systems for E-commerce environments. Electron Commer Res 8(1/2):1–27CrossRefMATHGoogle Scholar
  11. 11.
    Dabrowski M, Acton T (2013) The performance of recommender systems in online shopping: a user-centric study. Expert Syst Appl 40(14):5551Google Scholar
  12. 12.
    Polatidis N, Georgiadis C (2013) Mobile recommender systems: an overview of technologies and challenges. In: Informatics and applications (ICIA), second international conference on IEEE, pp 282–287Google Scholar
  13. 13.
    Gavalas D, Konstantopoulos C, Mastakas K, Pantziou G (2014) Mobile recommender systems in tourism. J Netw Comput Appl 39:319–333CrossRefGoogle Scholar
  14. 14.
    Joon YC, Hee SS, Soung HK (2007) MCORE: a context-sensitive recommendation system for the mobile Web. Expert Syst 24(1):32–46Google Scholar
  15. 15.
    Xia X, Wang X, Li J, Zhou X (2014) Multi-objective mobile app recommendation: a system-level collaboration approach. Comput Electr Eng 40(1):203Google Scholar
  16. 16.
    Jannach D (2011) Recommender systems: an introduction. Cambridge University Press, New YorkGoogle Scholar
  17. 17.
    Owusu TD, Hoffman C (2014) The personalization and prediction innovation of mobile recommender systems. Issues Inf Syst 15(2):168–174Google Scholar
  18. 18.
    Gao H, Wang S, Yang B, Yang H (2014) User preference-oriented collaborative recommendation algorithm in E-commerce. J Softw 9(7):1886Google Scholar
  19. 19.
    Shen X, Sun Y, Wang N (2013) Recommendations from friends anytime and anywhere: toward a model of contextual offer and consumption values. CyberPsychol Behav Soc Network 16(5):349–356CrossRefGoogle Scholar
  20. 20.
    Tintarev N, Masthoff J (2012) Evaluating the effectiveness of explanations for recommender systems. User Model User-Adap Inter 22(4/5):399–439CrossRefGoogle Scholar
  21. 21.
    Pu P, Li C, Hu R (2012) Evaluating recommender systems from the user’s perspective: survey of the state of the art. User Model User-Adap Inter 22(4/5):317–355CrossRefGoogle Scholar
  22. 22.
    Liu Q, Ma H, Chen E, Xiong H (2013) A survey of context-aware mobile recommendations. Int J Inf Technol Decis Making 12(1):139–172CrossRefGoogle Scholar
  23. 23.
    Knijnenburg B, Willemsen M, Gantner Z, Soncu H, Newell C (2012) Explaining the user experience of recommender systems. User Model User-Adap Inter 22(4/5):441–504CrossRefGoogle Scholar
  24. 24.
    Polatidis N, Georgiadis C (2014) Factors influencing the quality of the user experience in ubiquitous recommender systems. In: Distributed, ambient, and pervasive interactions, pp 369–379Google Scholar
  25. 25.
    Hor-Meyll LF, Correia LM, Ferreira JB (2014) Why should I accept ads on my mobile phone? Factors affecting the acceptance by Brazilian teenagers. Braz Bus Rev (English Edition) 11(4):130–150Google Scholar
  26. 26.
    Oulasvirta A, Ratternbury T, Raita E (2012) Habits make smartphone use more pervasive. Pers Ubiquit Comput 16(1):105–114CrossRefGoogle Scholar
  27. 27.
    Bryman A (2012) Social research methods. Oxford University Press, New YorkGoogle Scholar
  28. 28.
    MarketLine Industry Profile (2014) Profile Global Mobile Phones April 2014. Mobile Phones Industry Profile: Global, pp 1–34Google Scholar
  29. 29.
    MarketLine Industry Profile (2012) Mobile Phones in China September 2012, Mobile Phones Industry Profile: China, pp 1–35Google Scholar
  30. 30.
    Pearson K (1901) On lines and planes of closest fit to systems of points in space. Phil Mag 2(11):559–572CrossRefMATHGoogle Scholar
  31. 31.
    Russell DW (2002) In search of underlying dimensions: the use (and abuse) of factor analysis in personality and social psychology bulletin. Pers Soc Psychol Bull 28(12):1629–1646CrossRefGoogle Scholar
  32. 32.
    Wienclaw AR (2009) Correlation, research starters sociology. Res Starters, EBSCOhost, viewed 30 April 2015Google Scholar
  33. 33.
    Hair JF, Black C, Babin J, Anderson E (1998) Multivariate data analysis. Prentice Hall, Upper Saddle River, N.JGoogle Scholar
  34. 34.
    Cronbach LJ (1951) Coefficient alpha and the internal structure of tests. Psychometricka 13:93–96Google Scholar
  35. 35.
    Gliem J, Gliem R (2003) Calculating, interpreting, and reporting Cronbach’s alpha reliability coefficient for Likert-type scales. Midwest research-to-practice conference in adult, continuing, and community educationGoogle Scholar
  36. 36.
    Kline P (2000) The handbook of psychological testing. Routledge, LondonGoogle Scholar
  37. 37.
    George D, Mallery P (2003) SPSS for windows step by step: a simple guide and reference. Allyn & Bacon, BostonGoogle Scholar
  38. 38.
    Bartlett MS (1950) Tests of significance in factor analysis. Br J Psychol 3:77–85Google Scholar
  39. 39.
    Kaiser HF, Rice J (1974) Little jiffy, mark iv. Educ Psychol Measur 34(1):111–117CrossRefGoogle Scholar
  40. 40.
    Brace N, Snelgar R, Kemp R (2012) SPSS for psychologists. Psychology Press, New YorkGoogle Scholar
  41. 41.
    Kutner MH, Nachtsheim CJ, Neter J (2004) Applied linear regression models. McGraw-Hill Irwin, New YorkGoogle Scholar
  42. 42.
    Bauer HH et al (2015) Driving consumer acceptance of mobile marketing: a theoretical framework and empirical study. J Electron Commer Res 6:181–192Google Scholar
  43. 43.
    Sultan F, Rohm A, Gao T (2009) Factors affecting consumer acceptance of mobile marketing: a two-country study of youth markets. J Interact Mark 23:308–320CrossRefGoogle Scholar
  44. 44.
    Tsang MM, Ho SC, Liang TP (2004) Consumer attitudes toward mobile advertising: an empirical study. Int J Electron Commer 8:65–78Google Scholar
  45. 45.
    Zhang J, Mao E (2008) Understanding the acceptance of mobile SMS advertising among young Chinese consumers. Psychol Mark 25(8):787–805CrossRefGoogle Scholar
  46. 46.
    Sun Y, Chong K, Han YS, Rho S, Man KL (2015) Key factors affecting user experience of mobile recommendation systems. In: Lecture notes in engineering and computer science: proceedings of the international multiconference of engineers and computer scientists, 18–20 March, 2015, Hong Kong, pp 724–728Google Scholar

Copyright information

© Springer Science+Business Media Singapore 2016

Authors and Affiliations

  • Yan Sun
    • 1
  • Woon Kian Chong
    • 1
  • Ka Lok Man
    • 2
  • Seungmin Rho
    • 3
  • Dejun Xie
    • 4
  1. 1.International Business School SuzhouXi’an Jiaotong-Liverpool UniversityJiangsu ProvincePeople’s Republic of China
  2. 2.Department of Computer Science and Software EngineeringXi’an Jiaotong-Liverpool UniversityJiangsu ProvincePeople’s Republic of China
  3. 3.Department of MultimediaSungkyul UniversityAnyangRepublic of Korea
  4. 4.Department of Financial Mathematics and Financial EngineeringSouth University of Science and Technology of ChinaShenzhenChina

Personalised recommendations