Skip to main content

Critical Review of Measurement for Multipartite Entanglement: Detection and Quantification

  • Conference paper
  • First Online:
Regional Conference on Science, Technology and Social Sciences (RCSTSS 2014)

Abstract

Quantum entanglement is one of the fields in quantum mechanics. Recently, quantum entanglement becomes the heart of many tasks in quantum information such as quantum cryptography, quantum teleportation and quantum computing due to the capability it to compute data more efficient compare classical computer. Therefore, the measurement of entanglement become important to determine either the state is entangled or separable. The aim of this paper is to view all possible methods of measurement in term of detection and quantification for multipartite entanglement cases. The outcome of this paper is to classify the method of detection and quantification including summarize the criteria and advantage or disadvantage of each method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abaffy M (2011) Multipartite entanglement. Bachelor. Masaryk university, Brno

    Google Scholar 

  • Amico L, Fazio R, Osterloh A, Vedral V (2008) Entanglement in many-body systems. Rev Mod Phys 80(2):517–576

    Article  Google Scholar 

  • Barnum H, Linden N (2001) Monotones and invariants for multi-particle quantum states. J Phys A: Math Gen 34(35):6787

    Article  Google Scholar 

  • Bruß D (2002) Characterizing entanglement. J Math Phys 43(9):4237–4251. doi:10.1063/1.1494474

    Article  Google Scholar 

  • Carteret HA, Higuchi A, Sudbery A (2000) Multipartite generalization of the Schmidt decomposition. J Math Phys 41(12):7932–7939. doi:10.1063/1.1319516

    Article  Google Scholar 

  • Chuang IL, Neilsen MA (2000) Quantum computation and quantum information. Cambridge University Press, Cambridge

    Google Scholar 

  • Eisert J, Briegel HJ (2001) Schmidt measure as a tool for quantifying multiparticle entanglement. Phys Rev A 64(2):022306

    Article  Google Scholar 

  • Eltschka C, Siewert J (2014a) Practical method to obtain a lower bound to the three-tangle. Phys Rev A 89(2):022312

    Article  Google Scholar 

  • Eltschka C, Siewert J (2014b) Quantifying entanglement resources, arXiv:quant-ph/1402.6710v

    Google Scholar 

  • Guhne O, Toth G (2009) Entanglement detection. J Phys Rep 1–75. doi:10.1016/j.physrep.2009.02.2004

  • Guo Y, Fan H (2013) Generalized Schmidt number for multipartite states, arXiv:quant-ph/1304.1950v2

    Google Scholar 

  • Hiesmayr BC, Huber M, Krammer P (2009) Two computable sets of multipartite entanglement measures. Phys Rev A 79(6):062308

    Article  Google Scholar 

  • Horodecki M, Horodecki P, Horodecki R (1996) Separability of mixed states: necessary and sufficient conditions. Phys Lett A 223(1–2):1–8

    Article  Google Scholar 

  • Idrus B, Konstadopoulou A, Vourdas A (2010) Correlations in a chain of three oscillators with nearest neighbour coupling. J Mod Opt 57(7):1–6. doi:10.1080/09500341003789926

    Article  Google Scholar 

  • Jiao-Jiao L, Zhi-Xi W (2010) Monogamy relations in tripartite quantum system. Chin Phys B 19(10):100310–100310. doi:10.1088/1674-1056/19/10/100310

    Google Scholar 

  • Jingshui Y, Wenbo X (2011) Calculation of quantum entanglement. In: Paper presented at the tenth international symposium on distributed computing and applications to business, engineering and science (DCABES), 2011

    Google Scholar 

  • Jurkowski J, ChruÅ›ciÅ„ski D (2010) Estimating concurrence via entanglement witnesses. Phys Rev A 81(5):052308

    Article  Google Scholar 

  • Kinsella S (2006) Online measurement of entanglement of a quantum state (D. o. I. Technology, Trans). National University of Ireland, Galway, pp 1–50

    Google Scholar 

  • Krammer P (2005) Quantum entanglement: detection, classification, and quantification Master University of Vienna. Austria, Wien

    Google Scholar 

  • Lanyon BP, Jurcevic P, Zwerger M, Hempel C, Martinez EA, Dür W, Roos CF (2013) Measurement-based quantum computation with trapped ions. Phys Rev Lett 111(21):210501

    Article  Google Scholar 

  • Lewenstein M, Kraus B, Cirac JI, Horodecki P (2000) Optimization of entanglement witnesses. Phys Rev A 62(5):052310

    Article  Google Scholar 

  • Li H, Wang S, Cui J, Long G (2013) Quantifying entanglement of arbitrary-dimensional multipartite pure states in terms of the singular values of coefficient matrices. Phys Rev A 87(4):042335

    Article  Google Scholar 

  • Liu D, Zhao X, Long G-L (2010) Multiple entropy measures for multi-particle pure quantum state. Commun Theor Phys 54(5):825

    Article  Google Scholar 

  • Ma Z-H, Chen Z-H, Chen J-L, Spengler C, Gabriel A, Huber M (2011) Measure of genuine multipartite entanglement with computable lower bounds. Phys Rev A 83(6):062325

    Article  Google Scholar 

  • Ryszard H, PaweÅ‚ H, MichaÅ‚ H, Karol H (2009) Quantum entanglement. Rev Mod Phys 81(2):865–942

    Article  Google Scholar 

  • Sheikholeslam SA, Gulliver TA (2012) Classification and measurement of multipartite quantum entanglements. arXiv:quant-ph/1205.2339v1

    Google Scholar 

  • Sperling J, Vogel W (2011) The Schmidt number as a universal entanglement measure. Phys Scr 83(4):045002

    Article  Google Scholar 

  • Terhal BM (2000) Bell inequalities and the separability criterion. Phys Lett A 271(5):319–326

    Article  Google Scholar 

  • Wei T-C, Goldbart PM (2003) Geometric measure of entanglement and applications to bipartite and multipartite quantum states. Phys Rev A 68(4):042307

    Article  Google Scholar 

  • Yu C-S, Song H-S (2005) Multipartite entanglement measure. Phys Rev A 71(4):042331

    Article  Google Scholar 

  • Zhu X-N, Fei S-M (2013) Lower bound of concurrence for qubit systems. In: Quantum information processing, pp 1–9. doi:10.1007/s11128-013-0693-7

    Google Scholar 

  • Zhu X-N, Zhao M-J, Fei S-M (2012) Lower bound of multipartite concurrence based on subquantum state decomposition. Phys Rev A 86(2):022307

    Article  Google Scholar 

  • Zulkarnain ZA, Konstadopoulou A, Vourdas A (2006) Measurements and correlations in tri-partite systems. Int J Mod Phys B 20:1551–1563

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the research grant provided by Malaysian Ministry of Higher Education code: FGRS/1/2011/SG/UKM/03/5.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siti Munirah Mohd .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this paper

Cite this paper

Mohd, S.M., Idrus, B., Mukhtar, M., Zainuddin, H. (2016). Critical Review of Measurement for Multipartite Entanglement: Detection and Quantification. In: Yacob, N., Mohamed, M., Megat Hanafiah, M. (eds) Regional Conference on Science, Technology and Social Sciences (RCSTSS 2014). Springer, Singapore. https://doi.org/10.1007/978-981-10-0534-3_32

Download citation

Publish with us

Policies and ethics