Advances in Mathematical Economics Volume 20 pp 3-22

Part of the Advances in Mathematical Economics book series (MATHECON, volume 20) | Cite as

Local Risk-Minimization for Barndorff-Nielsen and Shephard Models with Volatility Risk Premium

Research Article

Abstract

We derive representations of locally risk-minimizing strategies of call and put options for Barndorff-Nielsen and Shephard models: jump type stochastic volatility models whose squared volatility process is given by a non-Gaussian Ornstein-Uhlenbeck process. The general form of Barndorff-Nielsen and Shephard models includes two parameters: volatility risk premium β and leverage effect ρ. Arai and Suzuki (Local risk minimization for Barndorff-Nielsen and Shephard models. submitted. Available at http://arxiv.org/pdf/1503.08589v1) dealt with the same problem under constraint \(\beta = -\frac{1} {2}\). In this paper, we relax the restriction on β; and restrict ρ to 0 instead. We introduce a Malliavin calculus under the minimal martingale measure to solve the problem.

Keywords

Locally risk-minimizing strategy Barndorff-Nielsen and Shephard models Stochastic volatility models Malliavin calculus Lévy processes 

References

  1. 1.
    Arai T, Suzuki R, Local risk minimization for Barndorff-Nielsen and Shephard models. submitted. Available at http://arxiv.org/pdf/1503.08589v1
  2. 2.
    Barndorff-Nielsen OE, Shephard N (2001) Modelling by Lévy processes for financial econometrics. In: Barndorff-Nielsen OE, Mikosch T, Resnick S (eds) Lévy processes – theory and applications. Birkhäuser, Basel, pp 283–318CrossRefGoogle Scholar
  3. 3.
    Barndorff-Nielsen OE, Shephard N (2001) Non-Gaussian Ornstein-Uhlenbeck based models and some of their uses in financial econometrics. J R Stat Soc 63:167–241MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Cont R, Tankov P (2004) Financial modelling with jump processes. Chapman & Hall, LondonGoogle Scholar
  5. 5.
    Ishikawa Y (2013) Stochastic calculus of variations for jump processes. Walter De Gruyter, BerlinCrossRefMATHGoogle Scholar
  6. 6.
    Nicolato E, Venardos E (2003) Option pricing in stochastic volatility models of the Ornstein-Uhlenbeck type. Math Financ 13(4):445–466MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Nualart D (1995) The Malliavin calculus and related topics. Springer, Berlin/New YorkCrossRefMATHGoogle Scholar
  8. 8.
    Petrou E (2008) Malliavin calculus in Lévy spaces and applications to finance. Electron J Probab 27:852–879MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Protter P (2004) Stochastic integration and differential equations. Springer, Berlin/New YorkMATHGoogle Scholar
  10. 10.
    Renaud JF (2007) Calcul de Malliavin, processus de Lévy et applications en finance: quelques contributions. Dissertation, Université de Montréal. Available at http://neumann.hec.ca/pages/bruno.remillard/Theses/JFRenaud.pdf Google Scholar
  11. 11.
    Schoutens W (2003) Lévy processes in finance: pricing financial derivatives. Wiley, HobokenCrossRefGoogle Scholar
  12. 12.
    Schweizer M (2001) A guided tour through quadratic hedging approaches. In: Jouini E, Cvitanić J, Musiela M (eds) Option pricing, interest rates and risk management. Handbooks in mathematical finance. Cambridge University Press, Cambridge, pp 538–574CrossRefGoogle Scholar
  13. 13.
    Schweizer M (2008) Local risk-minimization for multidimensional assets and payment streams. Banach Center Publ 83:213–229MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Solé JL, Utzet F, Vives J (2007) Canonical Lévy process and Malliavin calculus. Stoch Process Appl 117:165–187CrossRefMATHGoogle Scholar
  15. 15.
    Wang W, Qian L, Wang W (2013) Hedging strategy for unit-linked life insurance contracts in stochastic volatility models. WSEAS Trans Math 12(4):363–373MathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media Singapore 2016

Authors and Affiliations

  1. 1.Department of EconomicsKeio UniversityTokyoJapan

Personalised recommendations