Skip to main content

Plant Growth-Promoting Rhizobacteria: Key Mechanisms of Action

  • Chapter
  • First Online:
Microbial-mediated Induced Systemic Resistance in Plants

Abstract

Plant growth-promoting rhizobacteria (PGPR) have gained worldwide importance and acceptance for their agricultural benefits through the application of combinations of different mechanisms of action, which allows increases in crop yield. This is due to the emerging demand for reduced dependence on synthetic chemical products and to the growing necessity of sustainable agriculture within a holistic vision of development and environmental protection. The use of selected plant-beneficial rhizobacteria may represent an important biotechnological approach to alleviate the negative effects of stress and to optimize nutrient cycling in different crops. Recent progress in our understanding of their action mechanisms, diversity, colonization ability, formulation, and application should facilitate their development as reliable components in the management of sustainable agricultural systems. In addition, numerous studies indicate increased crop performance with the use of these microorganisms. In this chapter, an understanding of the direct and indirect mechanisms of action of PGPR and their various benefits to plants are summarized and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Ahemad M, Kibret M (2014) Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. J King Saud Univ Sci 26(1):1–20

    Google Scholar 

  • Ahmad F, Ahmad I, Khan MS (2008) Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiol Res 163(2):173–181

    CAS  PubMed  Google Scholar 

  • Ahmed N (2010) Physiological and molecular basis of Azospirillum-Arabidopsis interaction. Dissertation, Universitätsbibliothek der Universität Würzburg

    Google Scholar 

  • Ambawade MS, Pathade GR (2015) Production of gibberellic acid by Bacillus siamensis BE 76 isolated from banana plant (Musa spp.). Int J Sci Res 4(7):394–398

    Google Scholar 

  • Andlauer W, Fürst P (2002) Nutraceuticals: a piece of history, present status and outlook. Food Res Int 35:171–176

    Google Scholar 

  • Araujo FF (2008) Seed inoculation with Bacillus subtilis, formulated with oyster meal and growth of corn, soybean and cotton. Ciênc Agrotech 32(2):456–462

    Google Scholar 

  • Araujo FF, Menezes D (2009) Induction of resistance in tomato by biotic (Bacillus subtilis) and abiotic (Acibenzolar-S-Metil) inducers. Summa Phytopathol 35:163–166

    Google Scholar 

  • Araujo FF, Henning AA, Hungria M (2005) Phytohormones and antibiotics produced by Bacillus subtilis and their effects on seed pathogenic fungi and on soybean root development. World J Microbiol Biotechnol 21:1639–1645

    CAS  Google Scholar 

  • Arzanesh MH, Alikhani HA, Khavazi K, Rahimian HA, Miransari M (2011) Wheat (Triticum aestivum L.) growth enhancement by Azospirillum sp. under drought stress. World J Microbiol Biotechnol 27:197–205

    CAS  Google Scholar 

  • Avis TJ, Gravel V, Antoun H, Tweddell RJ (2008) Multifaceted beneficial effects of rhizosphere microorganisms on plant health and productivity. Soil Biol Biochem 40:1733–1740

    CAS  Google Scholar 

  • Babalola OO (2010) Beneficial bacteria of agricultural importance. Biotech Lett 32(11):1559–1570

    CAS  Google Scholar 

  • Backman PA, Sikora RA (2008) Endophytes: an emerging tool for biological control. Biol Cont 46(1):1–3

    Google Scholar 

  • Badri DV, Loyola-Vargas VM, Du J, Stermitz FR, Broeckling CD, Iglesias-Andreu L, Vivanco JM (2008) Transcriptome analysis of Arabidopsis roots treated with signaling compounds: a focus on signal transduction, metabolic regulation and secretion. New Phytol 179:209–223

    CAS  PubMed  Google Scholar 

  • Badri DV, Weir TL, van der Lelie D, Vivanco JM (2009) Rhizosphere chemical dialogues: plant-microbe interactions. Curr Opin Biotech 20(6):642–650

    CAS  PubMed  Google Scholar 

  • Bashan Y (1998) Inoculants of plant growth-promoting bacteria for use in agriculture. Biotechnol Adv 16:729–770

    CAS  Google Scholar 

  • Bashan Y, de-Bashan LE (2010) How the plant growth-promoting bacterium Azospirillum promotes plant growth -a critical assessment. Adv Agron 108:77–136

    CAS  Google Scholar 

  • Bashan Y, de-Bashan LE (2015) Inoculant preparation and formulations for Azospirillum spp. In: Cassán FD, Okon Y, Creus CM (eds) Handbook for Azospirillum: technical issues and protocols. Springer, Cham, pp 469–485

    Google Scholar 

  • Bashan Y, Holguin G (1998) Proposal for the division of plant growth-promoting rhizobacteria into two classifications: biocontrol-PGPB (plant growth-promoting bacteria) and PGPB. Soil Biol Biochem 30(8):1225–1228

    CAS  Google Scholar 

  • Bashan Y, De-Bashan LE, Prabhu SR, Hernandez JP (2014) Advances in plant growth-promoting bacterial inoculant technology: formulations and practical perspectives (1998–2013). Plant Soil 378:1–33

    CAS  Google Scholar 

  • Bhattacharjee RB, Singh A, Mukhopadhyay SN (2008) Use of nitrogen-fixing bacteria as biofertilizer for non-legumes: prospects and challenges. Appl Microbiol Biotech 80(2):199–209

    CAS  Google Scholar 

  • Bhattacharyya PN, Jha DK (2012) Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol 28(4):1327–1350

    CAS  PubMed  Google Scholar 

  • Bhuvaneshwari K, Kumar A (2013) Agronomic potential of the association Azolla-Anabaena. Sci Res Report 3(1):78–82

    Google Scholar 

  • Bonas U, Lahaye T (2002) Plant disease resistance triggered by pathogen-derived molecules: refined models of specific recognition. Curr Opin Microbiol 5:44–50

    CAS  PubMed  Google Scholar 

  • Boyer M, Bally R, Perrotto S, Chaintreuil C, Wisniewski-Dye F (2008) A quorum-quenching approach to identify quorum-sensing-regulated functions in Azospirillum lipoferum. Res Microbiol 159(9–10):699–708

    CAS  PubMed  Google Scholar 

  • Carmen B, Roberto D (2011) Soil bacteria support and protect plants against abiotic stresses. In: Shanker A, Venkateswarlu B (eds) Abiotic stress in plants mechanisms and adaptations. InTech, doi:10.5772/23310

  • Cassan F, Perrig D, Sgroy V, Masciarelli O, Penna C, Luna V (2009) Azospirillum brasilense Az39 and Bradyrhizobium japonicum E109, inoculated singly or in combination, promote seed germination and early seedling growth in corn (Zea mays L.) and soybean (Glycine max L.). Eur J Soil Biol 45(1):28–35

    CAS  Google Scholar 

  • Cassan F, Vanderleyden J, Spaepen S (2014) Physiological and agronomical aspects of phytohormone production by model plant-growth-promoting rhizobacteria (PGPR) belonging to the genus Azospirillum. J Plant Growth Reg 33(2):440–459

    CAS  Google Scholar 

  • Cattelan AJ, Hartel PG, Fuhrmann JJ (1999) Screening for plant growth rhizobacteria to promote early soybean growth. Soil Sci Soc Am J 63:1670–1680

    CAS  Google Scholar 

  • Chanway CP (1997) Inoculation of tree roots with plant growth promoting rhizobacteria: an emerging technology for reforestation. For Sci 43:99–112

    Google Scholar 

  • Chaparro JM, Badri DV, Bakker MG, Sugiyama A, Manter DK, Vivanco JM (2013) Root exudation of phytochemicals in Arabidopsis follows specific patterns that are developmentally programmed and correlate with soil microbial functions. PLoS One 8(2):e55731

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chaparro JM, Badri DV, Vivanco JM (2014) Rhizosphere microbiome assemblage is affected by plant development. ISME J 8(4):790–803

    CAS  PubMed  Google Scholar 

  • Chauhan H, Bagyaraj DJ, Selvakumar G, Sundaram SP (2015) Novel plant growth promoting rhizobacteria -prospects and potential. Appl Soil Ecol 95:38–53

    Google Scholar 

  • Choudhary DK (2012) Microbial rescue to plant under habitat-imposed abiotic and biotic stresses. Appl Microbiol Biotechnol 96:1137–1155

    CAS  PubMed  Google Scholar 

  • Choudhary DK, Bhavdish NJ, Prakash A (2008) Volatiles as priming agents that initiate plant growth and defense responses. Curr Sci 94:595–604

    CAS  Google Scholar 

  • Choudhary DK, Sharma KP, Gaur RK (2011) Biotechnological perspectives of microbes in agro-ecosystems. Biotechnol Lett 33(10):1905–1910

    CAS  PubMed  Google Scholar 

  • Cohen A, Bottini R, Piccoli P (2008) Azospirillum brasilense Sp 245 produces ABA in chemically-defined culture medium and increases ABA content in Arabidopsis plants. Plant Growth Regul 54:97–103

    CAS  Google Scholar 

  • Compant S, Clément C, Sessitsch A (2010) Plant growth-promoting bacteria in the rhizo-and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biol Biochem 42(5):669–678

    CAS  Google Scholar 

  • Courty P, Smith P, Koegel S, Redecker D, Wipf D (2015) Inorganic nitrogen uptake and transport in beneficial plant root-microbe interactions. Cr Rev Plant Sci 34:4–16

    CAS  Google Scholar 

  • Dakora FD, Phillips DA (2002) Root exudates as mediators of mineral acquisition in low-nutrient environments. Plant Soil 245:35–47

    CAS  Google Scholar 

  • Dourado MN, Bogas AC, Pomini AM, Andreote FD, Quecine MC, Marsaioli AJ, Araújo WL (2013) Methylobacterium-plant interaction genes regulated by plant exudate and quorum sensing molecules. Braz J Microbiol 44(4):1331–1339

    PubMed  Google Scholar 

  • Duca D, Lorv J, Patten CL, Rose D, Glick BR (2014) Indole-3-acetic acid in plant– microbe interactions. A Van Leeuw J Microb 106:85–125

    CAS  Google Scholar 

  • Egamberdieva D, Berg G, Lindström K, Räsänen LA (2013) Alleviation of salt stress of symbiotic Galega officinalis L. (goat’s rue) by co-inoculation of Rhizobium with root-colonizing Pseudomonas. Plant Soil 369:453–465

    CAS  Google Scholar 

  • Egorshina AA, Khairullin R, Sakhabutdinova AR, Luk’yantsev MA (2012) Involvement of phytohormones in the development of interaction between wheat seedlings and endophytic Bacillus subtilis strain 11BM. Russ J Plant Phys 59(1):134

    CAS  Google Scholar 

  • Esikova TZ, Temirov YV, Sokolov SL, Alakhov YB (2002) Secondary antimicrobial metabolites produced by thermophilic Bacillus spp. strains VK2 and VK21. Appl Bioch Micro 38:226–231

    CAS  Google Scholar 

  • Figueiredo MVB, Burity HA, Martínez CR, Chanway CP (2008) Alleviation of drought stress in the common bean (Phaseolus vulgaris L.) by co-inoculation with Paenibacillus polymyxa and Rhizobium tropici. Appl Soil Ecol 40:182–188

    Google Scholar 

  • Figueiredo MVB, Seldin L, Araujo FF, Mariano RLR (2010) Plant growth promoting rhizobacteria: fundamentals and applications. In: Maheshwari DK (ed) Plant growth and health promoting bacteria. Springer, Heidelberg, pp 21–43

    Google Scholar 

  • Figueiredo MVB, Mergulhão ACES, Kuklinsky-Sobral J, Lira Junior MA, Araujo ASF (2013) Biological nitrogen fixation: importance, associated diversity, and estimates. In: Arora NK (ed) Plant microbe symbiosis: fundamentals and advances. Springer, New Delhi, pp 267–289

    Google Scholar 

  • Fosu-Mensah BY, Vlek PL, Manske G, Mensah M (2015) The influence of Azolla pinnata on floodwater chemistry, grain yield and nitrogen uptake of rice in Dano, Southwestern Burkina Faso. J Agr Sci 7(8):118–130

    Google Scholar 

  • Franche C, Lindstrom K, Elmerich C (2009) Nitrogen-fixing bacteria associated with leguminous and non-leguminous plants. Plant Soil 321:35–59

    CAS  Google Scholar 

  • Glick BR (2014) Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol Res 169(1):30–39

    CAS  PubMed  Google Scholar 

  • Glick BR (2015) Beneficial plant-bacterial interactions. Springer, Cham

    Google Scholar 

  • Glick BR, Karaturovic DM, Newell PC (1995) A novel procedure for rapid isolation of plant growth promoting Pseudomonas. Can J Microbiol 41:533–536

    CAS  Google Scholar 

  • Gray EJ, Smith DL (2005) Intracellular and extracellular PGPR: commonalities and distinctions in the plant-bacterium signaling processes. Soil Biol Biochem 37:395–412

    CAS  Google Scholar 

  • Grobelak A, Napora A, Kacprzak M (2015) Using plant growth-promoting rhizobacteria (PGPR) to improve plant growth. Ecol Eng 84:22–28

    Google Scholar 

  • Gupta A, Gopal M, Tilak KV (2000) Mechanism of plant growth promotion by rhizobacteria. Indian J Exp Biol 38:856–862

    CAS  PubMed  Google Scholar 

  • Han HS, Supanjani, Lee KD (2006) Effect of co-inoculation with phosphate and potassium solubilizing bacteria on mineral uptake and growth of pepper and cucumber. Plant Soil Environ 52(3):130–136

    CAS  Google Scholar 

  • Hanson AD, Nelsen CE, Pedersen AR, Everson EH (1979) Capacity for proline accumulation during water stress in barley and its implications for breeding for drought resistance. Crop Sci 19(4):489–493

    CAS  Google Scholar 

  • Hayat R, Ali S, Amara U, Khalid R, Ahmed I (2010) Soil beneficial bacteria and their role in plant growth promotion: a review. Ann Microbiol 60(4):579–598

    Google Scholar 

  • Huang XF, Chaparro JM, Reardon KF, Zhang R, Shen Q, Vivanco JM (2014) Rhizosphere interactions: root exudates, microbes, and microbial communities. Botany 92(4):267–275

    Google Scholar 

  • Hungenholtz J, Smid EJ (2002) Nutraceutical production with food-grade microorganisms. Curr Opin Biotech 13:497–507

    Google Scholar 

  • Jha PN, Gupta G, Jha P, Mehrotra R (2013) Association of rhizospheric/endophytic bacteria with plants: a potential gateway to sustainable agriculture. Greener J Agri Sc 3(2):73–84

    Google Scholar 

  • Jorquera MA, Crowley DE, Marschner P, Greiner R, Fernández MT, Romero D, Menezes-Blackburn D, Mora MDL (2011) Identification of β-propeller phytase-encoding genes in culturable Paenibacillus and Bacillus spp. from the rhizosphere of pasture plants on volcanic soils. FEMS Microbiol Ecol 75(1):163–172

    CAS  PubMed  Google Scholar 

  • Kai M, Haustein MF, Petri A, Scholz B, Piechulla B (2009) Bacterial volatiles and their action potential. Appl Microbiol Biotechnol 81:1001–1012

    CAS  PubMed  Google Scholar 

  • Kang BG, Kim WT, Yun H, Chang S (2010) Use of plant growth-promoting rhizobacteria to control stress responses of plant roots. Plant Biotechnol Rep 4:179–183

    Google Scholar 

  • Katz E, Demain AL (1977) The peptide antibiotics of Bacillus: chemistry, biogenesis and possible functions. Bacteriol Rev 41:449–474

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kavamura VN, Santos SN, Silva JL, Parma MM, Ávila LA, Visconti A, Zucchi TD, Taketani RG, Andreote F, Melo IS (2013) Screening of Brazilian cacti rhizobacteria for plant growth promotion under drought. Microbiol Res 168:183–191

    CAS  PubMed  Google Scholar 

  • Kilian M, Steiner U, Krebs B, Junge H, Schmiedeknecht G, Hain R (2000) Fzb24 Bacillus subtilis: mode of action of a microbial agent enhancing plant vitality. Pflanzenschutz-Nachr Bayer 1:72–93

    Google Scholar 

  • Kloepper JW (1999) Plant root-bacterial interactions in biological control of soil borne diseases and potential extension to systemic and foliar diseases. Australas Plant Pathol 28:21–26

    Google Scholar 

  • Kloepper JW, Schroth MN (1978) Plant growth-promoting rhizobacteria on radishes. In: Abstract of the 4th international conference on plant pathogenic bacteria, Station de pathologie végétale et phytobactériologie, Angers, p 27, 2 Aug Sept, 1978

    Google Scholar 

  • Kloepper JW, Schroth MN, Miller TD (1980) Effects of rhizosphere colonization by plant growth-promoting rhizobacteria on potato plant development and yield. Phytopathology 70:1078–1082

    Google Scholar 

  • Kloepper JW, Ryu CM, Zhang S (2004) Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology 94:1259–1226

    CAS  PubMed  Google Scholar 

  • Kumar M, Yadav V, Tuteja N, Johri AK (2009) Antioxidant enzyme activities in maize plants colonized with Piriformospora indica. Microbiology 155:780–790

    CAS  PubMed  Google Scholar 

  • Kumar A, Bahadur I, Maurya BR, Raghuwanshi R, Meena VS, Singh DK, Dixit J (2015) Does a plant growth promoting rhizobacteria enhance agricultural sustainability? J Pur Appl Microbiol 9:715–724

    Google Scholar 

  • Kwon JW, Kim SD (2014) Characterization of an Antibiotic Produced by Bacillus subtilis JW-1 that suppresses Ralstonia solanacearum. J Microbiol Biotechnol 24:13–18

    CAS  PubMed  Google Scholar 

  • Li J, Ovakin DH, Charles TC, Glick BR (2000) An ACC deaminase minus mutant of Enterobacter cloacae UW4 no longer promotes root elongation. Curr Microbiol 41:101–105

    CAS  PubMed  Google Scholar 

  • Li S, Hua G, Liu H, Guo J (2008) Analysis of defense enzymes induced by antagonistic bacterium Bacillus subtilis strain AR12 towards Ralstonia solanacearum in tomato. Ann Microbiol 58:573–578

    CAS  Google Scholar 

  • López-Bucio J, Campos-Cuevas JC, Hernández-Calderón E, Velásquez-Becerra C, Farías-Rodríguez R, Macías-Rodríguez LI, Valencia-Cantero E (2007) Bacillus megaterium rhizobacteria promote growth and alter root-system architecture through an auxin-and ethylene-independent signaling mechanism in Arabidopsis thaliana. Mol Plant Microbe In 20(2):207–217

    Google Scholar 

  • Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Ann Rev Microbiol 63:541–556

    CAS  Google Scholar 

  • Marulanda A, Azcón R, Chaumont F, Ruiz-Lozano JM, Aroca R (2010) Regulation of plasma membrane aquaporins by inoculation with a Bacillus megaterium strain in maize (Zea mays L.) plants under unstressed and salt-stressed conditions. Planta 232(2):533–543

    CAS  PubMed  Google Scholar 

  • Melo IS (1991) Potentiality of uses of Trichoderma spp. in biological control of plant diseases. In: Bettiol W (ed) Biological control of plant diseases. Embrapa, Campinas, pp 135–156

    Google Scholar 

  • Minaxi LN, Yadav RC, Saxena J (2012) Characterization of multifaceted Bacillus sp. RM-2 for its use as plant growth promoting bioinoculant for crops grown in semi arid deserts. Appl Soil Ecol 59:124–135

    Google Scholar 

  • Molina-Favero C, Creus CM, Simontacchi M, Puntarulo S, Lamattina L (2008) Aerobic nitric oxide production by Azospirillum brasilense Sp245 and its influence on root architecture in tomato. Mol Plant Microbe In 21(7):1001–1009

    CAS  Google Scholar 

  • Moraes MG (1998) Mechanisms of acquired systemic resistance in plants. Revis Anu Patol Plantas 6:261–284

    Google Scholar 

  • Moraes FP, Colla LM (2006) Functional foods and nutraceuticals: definition, legislation and health benefits. Rev Eletrôn Farm 3:109–122

    Google Scholar 

  • Nadeem SM, Ahmad M, Zahir ZA, Javaid A, Ashraf M (2014) The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments. Biotech Adv 32(2):429–448

    Google Scholar 

  • Naiman AD, Latrónico A, De Salamone IEG (2009) Inoculation of wheat with Azospirillum brasilense and Pseudomonas fluorescens: impact on the production and culturable rhizosphere microflora. Eur J Soil Biol 45(1):44–51

    Google Scholar 

  • Nimnoi P, Pongsilp N, Lumyong S (2010) Endophytic actinomycetes isolated from Aquilaria crassna Pierre ex Lec and screening of plant growth promoters production. World J Microbiol Biotech 26(2):193–203

    CAS  Google Scholar 

  • Öğüt M, Er F, Neumann G (2011) Increased proton extrusion of wheat roots by inoculation with phosphorus solubilizing microorganism. Plant Soil 339:285–297

    Google Scholar 

  • Ortíz-Castro R, Valencia-Cantero E, López-Bucio J (2008) Plant growth promotion by Bacillus megaterium involves cytokinin signaling. Plant Signal Behav 3(4):263–265

    PubMed  PubMed Central  Google Scholar 

  • Phae C, Shoda M (1991) Investigation of optimal conditions for separation of iturin an antifungal peptide produced by Bacillus subtilis. J Ferment Bioengineer 71:118–121

    CAS  Google Scholar 

  • Pieterse CMJ, van Pelt JA, Knoester M, Laan R, Gerrits H, Weisbeek PJ, van Loon LC (1998) Novel signaling pathway controlling induced systemic resistance in Arabidopsis. Plant Cell 10:1571–1580

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pii Y, Mimmo T, Tomasi N, Terzano R, Cesco S, Crecchio C (2015) Microbial interactions in the rhizosphere: beneficial influences of plant growth-promoting rhizobacteria on nutrient acquisition process: a review. Biol Fert Soils 51(4):403–415

    CAS  Google Scholar 

  • Radzki W, Manero FG, Algar E, García JL, García-Villaraco A, Solano BR (2013) Bacterial siderophores efficiently provide iron to iron-starved tomato plants in hydroponics culture. A Van Leeuw J Microb 104(3):321–330

    CAS  Google Scholar 

  • Rampazzo PE (2013) Interaction between rhizobacteria and sugarcane under different conditions of substrate moisture: growth, photosynthesis and water relations. Dissertation, Institute Agronomic of Campinas, Campinas

    Google Scholar 

  • Raza W, Shen Q (2010) Growth, Fe3+ reductase activity, and siderophore production by Paenibacillus polymyxa SQR-21 under differential iron conditions. Curr Microbiol 61(5):390–395

    CAS  PubMed  Google Scholar 

  • Richardson AE, Simpson RJ (2011) Soil microorganisms mediating phosphorus availability update on microbial phosphorus. Plant Physiol 156(3):989–996

    CAS  PubMed  PubMed Central  Google Scholar 

  • Richardson AE, Barea JM, McNeill AM, Prigent-Combaret C (2009) Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil 321:305–339

    CAS  Google Scholar 

  • Robin A, Vansuyt G, Hinsinger P, Meyer JM, Briat JF, Lemanceau P (2008) Iron dynamics in the rhizosphere: consequences for plant health and nutrition. Adv Agron 99:183–225

    CAS  Google Scholar 

  • Rodrigues AC, Bonifacio A, Antunes JEL, Silveira JAG, Figueiredo MVB (2013) Minimization of oxidative stress in cowpea nodules by the interrelationship between Bradyrhizobium sp. and plant growth-promoting bacteria. Appl Soil Ecol 64:245–251

    Google Scholar 

  • Romeiro RS (2000) PGPR and systemic induction of resistance against plant pathogens. Summa Phytopathol 26:177–184

    Google Scholar 

  • Ryu C, Farag MA, Hu C, Reddy MS, Wei H, Pare PA, Kloepper JW (2003) Bacterial volatiles promote growth in Arabidopsis. Proc Natl Acad Sci U S A 100:4927–4932

    CAS  PubMed  PubMed Central  Google Scholar 

  • Saha R, Saha N, Donofrio RS, Bestervelt LL (2013) Microbial siderophores: a mini review. J Basic Microbiol 53:303–317

    PubMed  Google Scholar 

  • Saikia SP, Dutta SP, Goswami A, Bhau BS, Kanjilal PB (2010) Role of Azospirillum in the improvement of legumes. Springer, Vienna

    Google Scholar 

  • Saraf M, Rajkumar S, Saha T (2011) Perspectives of PGPR in agri-ecosystems. In: Maheshwari DK (ed) Bacteria in agrobiology: crop ecosystems. Springer, Heidelberg, pp 361–385

    Google Scholar 

  • Sgroy V, Cassán F, Masciarelli O, Del Papa MF, Lagares A, Luna V (2009) Isolation and characterization of endophytic plant growth-promoting (PGPB) or stress homeostasis-regulating (PSHB) bacteria associated to the halophyte Prosopis strombulifera. Appl Microbiol Biotechnol 85(2):371–381

    CAS  PubMed  Google Scholar 

  • Sharma SB, Sayyed RZ, Trivedi MH, Gobi TA (2013) Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. Springer Plus 2:587

    PubMed  PubMed Central  Google Scholar 

  • Simova-Stoilova L, Demirevska K, Petrova T, Tsenov N, Feller U (2008) Antioxidative protection in wheat varieties under severe recoverable drought at seedling stage. Plant Soil Environ 54:529–536

    CAS  Google Scholar 

  • Spence C, Bais H (2015) Role of plant growth regulators as chemical signals in plant-microbe interactions: a double edged sword. Curr Opin Plant Biol 27:52–58

    CAS  PubMed  Google Scholar 

  • Tapas AR, Sakarkar DM, Kakde RB (2008) Flavonoids as nutraceuticals: a review. Trop J Pharm Res 7:1089–1099

    Google Scholar 

  • Vacheron J, Desbrosses G, Bouffaud ML, Touraine B, Moënne-Loccoz Y, Muller D, Legendre L, Wisniewski-Dyé F, Prigent-Combaret C (2013) Plant growth-promoting rhizobacteria and root system functioning. Front Plant Sci 4:356

    PubMed  PubMed Central  Google Scholar 

  • van Loon LC (2007) Plant responses to plant growth-promoting rhizobacteria. Eur J Plant Pathol 119(3):243–254

    Google Scholar 

  • Verma JP, Yadav J, Tiwari KN, Kumar A (2013) Effect of indigenous Mesorhizobium spp. and plant growth promoting rhizobacteria on yields and nutrients uptake of chickpea (Cicer arietinum L.) under sustainable agriculture. Ecol Engin 51:282–286

    Google Scholar 

  • Vessey JK (2003) Plant growth-promoting rhizobacteria as biofertilizers. Plant Soil 255:571–586

    CAS  Google Scholar 

  • Wall GC, Sanchez JL (1993) A biocontrol agent for Pseudomonas solanacearum. In: Hatman GL, Hayward AC (eds) Proceedings of international conference held at Kaohsiung, Taiwan, 1993

    Google Scholar 

  • Werner T, Schmülling T (2009) Cytokinin action in plant development. Curr Opin Plant Biol 12:527–538

    CAS  PubMed  Google Scholar 

  • Yang J, Kloepper JW, Ryu CM (2009) Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci 14:1–4

    CAS  PubMed  Google Scholar 

  • Zhao Y, Selvaraj JN, Xing F, Zhou L, Wang Y, Song H (2014) Antagonistic action of Bacillus subtilis Strain SG6 on Fusarium graminearum. PLoS One 9:e92486

    PubMed  PubMed Central  Google Scholar 

  • Zheng XY, Sinclair JB (2000) The effects of traits of Bacillus megaterium on seed and root colonization and their correlation with the suppression of Rhizoctonia root rot of soybean. BioControl 45:223–243

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Márcia do Vale Barreto Figueiredo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Figueiredo, M.d.V.B., Bonifacio, A., Rodrigues, A.C., de Araujo, F.F. (2016). Plant Growth-Promoting Rhizobacteria: Key Mechanisms of Action. In: Choudhary, D.K., Varma, A. (eds) Microbial-mediated Induced Systemic Resistance in Plants. Springer, Singapore. https://doi.org/10.1007/978-981-10-0388-2_3

Download citation

Publish with us

Policies and ethics