Skip to main content

Induced Systemic Resistance by Rhizospheric Microbes

  • Chapter
  • First Online:
Microbial-mediated Induced Systemic Resistance in Plants

Abstract

In a natural ecosystem, plants copiously form advantageous and constructive relations with soil microbiomes that are significant and vital for plant growth survival and, as such, influence plant biodiversity and overall ecosystem performance. Conventional and typical examples of symbiotic microbes are ecto- and endomycorrhizal fungi that assist in water and nutrients uptake and Rhizobium bacteria that fixes free atmospheric nitrogen for plant. Advantageous microorganisms in the overall microbiome of plant roots zone enhance the plant vigor. Induced systemic resistance (ISR) developed as a significant and imperative means and way by which the selected and potential plant growth-promoting microbes in the rhizosphere influence the whole plant structure for higher and better defense against the broad range of pathogens and insect herbivores. A plethora of root-associated mutualistic microbes, including mainly common microbes such as Pseudomonas, Bacillus, Trichoderma, and ecto- and endomycorrhizal species, trigger and induce the plant’s immune system for boosted defense without precisely activating the expensive defenses. A lot of research work and evidences advocate that advantageous microorganisms are firstly established as possible plant invaders, after which the plant’s immune system is triggered, while, at delayed stages of the plant-microbe interaction, the mutualists are able to trigger the plant defense mechanism to enable efficacious colonization of the plant roots.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Achouak W, Conrod S, Cohen V, Heulin T (2004) Phenotypic variation of Pseudomonas brassicacearum as a plant root-colonization strategy. Mol Plant-Microbe Interact 17:872–879

    CAS  PubMed  Google Scholar 

  • Alstrom S (1991) Induction of disease resistance in common bean susceptible to halo blight bacterial pathogen after seed bacterization with rhizosphere pseudomonads. J Gen Appl Microbiol 37:495–501

    Google Scholar 

  • Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57:233–266

    CAS  PubMed  Google Scholar 

  • Bakker PAHM, Pieterse CMJ, Van Loon LC (2007) Induced systemic resistance by fluorescent Pseudomonas spp. Phytopathology 97:239–243

    PubMed  Google Scholar 

  • Bardoel BW, Van der Ent S, Pel MJC, Tommassen J, Pieterse CMJ, van Kessel KPM, van Strijp JAG (2011) Pseudomonas evades immune recognition of flagellin in both mammals and plants. PLoS Pathog 7:e1002206

    CAS  PubMed  PubMed Central  Google Scholar 

  • Boller T, Felix G (2009) A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern recognition receptors. Annu Rev Plant Biol 60:379–406

    CAS  PubMed  Google Scholar 

  • Chen B, Gui F, Xie B, Deng Y, Sun X, Lin M, Tao Y, Li S, Bahn Y (2013) Composition and expression of genes encoding carbohydrate-active enzymes in the straw degrading mushroom Volvariella volvacea. PLoS One 8(3):e58780

    CAS  PubMed  PubMed Central  Google Scholar 

  • Davidson CJ, Surette MG (2008) Individuality in bacteria. Annu Rev Genet 42:253–268

    CAS  PubMed  Google Scholar 

  • De Jonge R, Van Esse HP, Kombrink A, Shinya T, Desaki Y et al (2010) Conserved fungal LysM effector Ecp6 prevents chitin-triggered immunity in plants. Science 329:953–955

    PubMed  Google Scholar 

  • Dempsey DA, Klessig DF (2012) SOS: too many signals for systemic acquired resistance? Trends Plant Sci 17:538–545

    CAS  PubMed  Google Scholar 

  • Dodds PN, Rathjen JP (2010) Plant immunity: towards an integrated view of plant-pathogen interactions. Nat Rev Genet 11:539–548

    CAS  PubMed  Google Scholar 

  • Doornbos RF, Geraats BPJ, Kuramae EE, Van Loon LC, Bakker PAHM (2011) Effects of jasmonic acid, ethylene, and salicylic acid signaling on the rhizosphere bacterial community of Arabidopsis thaliana. Mol Plant-Microbe Interact 24:395–407

    CAS  PubMed  Google Scholar 

  • Felix G, Duran JD, Volko S, Boller T (1999) Plants have a sensitive perception system for the most conserved domain of bacterial flagellin. Plant J 18:265–276

    CAS  PubMed  Google Scholar 

  • Green TR, Ryan CA (1972) Wound-induced proteinase inhibitor in plant leaves: a possible defense mechanism against insects. Science 175:776–777

    CAS  PubMed  Google Scholar 

  • Hallet B (2001) Playing Dr. Jekyll and Mr. Hyde: combined mechanisms of phase variation in bacteria. Curr Opin Microbiol 4:570–581

    CAS  PubMed  Google Scholar 

  • Heller G, Adomas A, Li GS, Osborne J, van Zyl L, Sederoff R, Finlay RD, Stenlid J, Asiegbu FO (2008) Transcriptional analysis of Pinus sylvestris roots challenged with the ectomycorrhizal fungus Laccaria bicolor. BMC Plant Biol 8:19

    PubMed  PubMed Central  Google Scholar 

  • Hogenhout SA, Bos JIB (2011) Effector proteins that modulate plant-insect interactions. Curr Opin Plant Biol 14:422–428

    CAS  PubMed  Google Scholar 

  • Howe GA, Jander G (2008) Plant immunity to insect herbivores. Annu Rev Plant Biol 59:41–66

    CAS  PubMed  Google Scholar 

  • Jacobs S, Zechmann B, Molitor A, Trujillo M, Petutschnig E, Likpa V, Kogel KH, Schafer P (2011) Broad-spectrum suppression of innate immunity is required for colonization of Arabidopsis roots by the fungus Piriformospora indica. Plant Physiol 156:726–740

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jones JDG, Dangl JL (2006) The plant immune system. Nature 444:323–329

    CAS  PubMed  Google Scholar 

  • Kapulnik Y, Volpin H, Itzhaki H, Ganon D, Galili S, David R, Shaul O, Elad Y, Chet I, Okon Y (1996) Suppression of defence responses in mycorrhizal alfalfa and tobacco roots. New Phytol 133:59–64

    Google Scholar 

  • Kingsley RA, Baumler AJ (2000) Host adaptation and the emergence of infectious disease: the salmonella paradigm. Mol Microbiol 36:1006–1014

    CAS  PubMed  Google Scholar 

  • Kniskern JM, Traw MB, Bergelson J (2007) Salicylic acid and jasmonic acid signaling defense pathways reduce natural bacterial diversity on Arabidopsis thaliana. Mol Plant-Microbe Interact 20:1512–1522

    CAS  PubMed  Google Scholar 

  • Ku’c J (1982) Induced immunity to plant disease. Bioscience 32:854–860

    Google Scholar 

  • Liu JY, Blaylock LA, Endre G, Cho J, Town CD, VandenBosch KA, Harrison MJ (2003) Transcript profiling coupled with spatial expression analyses reveals genes involved in distinct developmental stages of an arbuscular mycorrhizal symbiosis. Plant Cell 15:2106–2123

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lopez-Gomez M, Sandal N, Stougaard J, Boller T (2011) Interplay of flg22-induced defence responses and nodulation in Lotus japonicus. J Exp Bot Online Publ. doi:10.1093/jxb/err1291

    Article  Google Scholar 

  • Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63:541–556

    CAS  PubMed  Google Scholar 

  • Maldonado AM, Doerner P, Dixon RA, Lamb CJ, Cameron RK (2002) A putative lipid transfer protein involved in systemic resistance signalling in Arabidopsis. Nature 419:399–403

    CAS  PubMed  Google Scholar 

  • Maunoury N, Redondo-Nieto M, Bourcy M, Van de Velde W, Alunni B, Laporte P, Durand P, Agier N, Marisa L, Vaubert D, Delacroix H, Duc G, Ratet P, Aggerbeck L, Kondorosi E, Mergaert P (2010) Differentiation of symbiotic cells and endosymbionts in Medicago truncatula nodulation are coupled to two transcriptome-switches. PLoS One 5:e9519

    PubMed  PubMed Central  Google Scholar 

  • Memelink J (2009) Regulation of gene expression by jasmonate hormones. Phytochemistry 70:1560–1570

    CAS  PubMed  Google Scholar 

  • Millet YA, Danna CH, Clay NK, Songnuan W, Simon MD, Werck-Reichhart D, Ausubel FM (2010) Innate immune responses activated in Arabidopsis roots by microbe-associated molecular patterns. Plant Cell 22:973–990

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mishina TE, Zeier J (2006) The Arabidopsis flavin-dependent monooxygenase FMO1 is an essential component of biologically induced systemic acquired resistance. Plant Physiol 141:1666–1675

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mishina TE, Zeier J (2007) Pathogen-associated molecular pattern recognition rather than development of tissue necrosis contributes to bacterial induction of systemic acquired resistance in Arabidopsis. Plant J 50:500–513

    CAS  PubMed  Google Scholar 

  • Mithofer A, Boland W (2008) Recognition of herbivory-associated molecular patterns. Plant Physiol 146:825–831

    PubMed  PubMed Central  Google Scholar 

  • Moreau S, Verdenaud M, Ott T, Letort S, de Billy F, Niebel A, Gouzy J, de Carvalho-Niebel F, Gamas P (2011) Transcription reprogramming during root nodule development in Medicago truncatula. PLoS One 6:e16463

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mousavi SAR, Chauvin A, Pascaud F, Kellenberger S, Farmer EE (2013) Glutamate receptor like genes mediate leaf-to-leaf wound signalling. Nature 500:422–426

    CAS  PubMed  Google Scholar 

  • Paszkowski U (2006) Mutualism and parasitism: the yin and yang of plant symbioses. Curr Opin Plant Biol 9:364–370

    PubMed  Google Scholar 

  • Pieterse CMJ, Van der Does D, Zamioudis C, Leon-Reyes A, Van Wees SCM (2012) Hormonal modulation of plant immunity. Annu Rev Cell Dev Biol 28:489–521

    CAS  PubMed  Google Scholar 

  • Pletta JM, Daguerrea Y, Wittulskya S, Vayssièresa A, Deveaua A, Meltonc SJ, Kohlera A, Morrell-Falveyc JL, Bruna A, Veneault-Fourreya C, Martin F (2014) Effector MiSSP7 of the mutualistic fungus Laccaria bicolor stabilizes the Populus JAZ6 protein and represses jasmonic acid (JA) responsive genes. PNAS 111(22):8299–8304

    Google Scholar 

  • Ross AF (1961) Systemic acquired resistance induced by localized virus infections in plants. Virology 14:340–358

    CAS  PubMed  Google Scholar 

  • Rossi M, Goggin FL, Milligan SB, Kaloshian I, Ullman DE, Williamson VM (1998) The nematode resistance gene Mi of tomato confers resistance against the potato aphid. Proc Natl Acad Sci U S A 95:9750–9754

    CAS  PubMed  PubMed Central  Google Scholar 

  • Segonzac C, Nimchuk ZL, Beck M, Tarr PT, Robatzek S, Meyerowitz EM, Zipfel C (2012) The shoot apical meristem regulatory peptide CLV3 does not activate innate immunity. Plant Cell 24(8):3186–3192

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shah J, Zeier J (2013) Long distance communication and signal amplification in systemic acquired resistance. Front Plant Sci 4:30

    PubMed  PubMed Central  Google Scholar 

  • Shoresh M, Harman GE, Mastouri F (2010) Induced systemic resistance and plant responses to fungal biocontrol agents. Annu Rev Phytopathol 48:21–43

    CAS  PubMed  Google Scholar 

  • Spoel SH, Dong X (2012) How do plants achieve immunity? Defence without specialized immune cells. Nat Rev Immunol 12:89–100

    CAS  PubMed  Google Scholar 

  • Thakur M, Sohal BS (2013) Role of elicitors in inducing resistance in plants against pathogen infection: a review. ISRN Biochem. doi:10.1155/2013/762412, Article ID 762412, 10 pages

    Article  PubMed  PubMed Central  Google Scholar 

  • Van den Broek D, Bloemberg GV, Lugtenberg B (2005) The role of phenotypic variation in rhizosphere Pseudomonas bacteria. Environ Microbiol 7:1686–1697

    PubMed  Google Scholar 

  • Van der Woude MW, Baumler AJ (2004) Phase and antigenic variation in bacteria. Clin Microbiol Rev 17:581–611

    PubMed  PubMed Central  Google Scholar 

  • Van Loon LC, Bakker PAHM, Pieterse CMJ (1998) Systemic resistance induced by rhizosphere bacteria. Annu Rev Phytopathol 36:453–483

    PubMed  Google Scholar 

  • Van Loon LC, Rep M, Pieterse CMJ (2006) Significance of inducible defense-related proteins in infected plants. Annu Rev Phytopathol 44:135–162

    PubMed  Google Scholar 

  • Van Loon LC, Bakker PAHM, Van der Heijdt WHW, Wendehenne D, Pugin A (2008) Early responses of tobacco suspension cells to rhizobacterial elicitors of induced systemic resistance. Mol Plant-Microbe Interact 21:1609–1621

    PubMed  Google Scholar 

  • Van Peer R, Niemann GJ, Schippers B (1991) Induced resistance and phytoalexin accumulation in biological control of Fusarium wilt of carnation by Pseudomonas sp. strain WCS417r. Phytopathology 81:728–734

    Google Scholar 

  • Van Wees SCM, Van der Ent S, Pieterse CMJ (2008) Plant immune responses triggered by beneficial microbes. Curr Opin Plant Biol 11:443–448

    PubMed  Google Scholar 

  • Verhage A, van Wees SCM, Pieterse CMJ (2010) Plant immunity: it’s the hormones talking, but what do they say? Plant Physiol 154:536–540

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vernooij B, Friedrich L, Morse A, Reist R, Kolditz-Jawhar R et al (1994) Salicylic acid is not the translocated signal responsible for inducing systemic acquired resistance but is required in signal transduction. Plant Cell 6:959–965

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vlot AC, Dempsey DA, Klessig DF (2009) Salicylic acid, a multifaceted hormone to combat disease. Annu Rev Phytopathol 47:177–206

    CAS  PubMed  Google Scholar 

  • Walters DR, Ratsep J, Havis ND (2013) Controlling crop diseases using induced resistance: challenges for the future. J Exp Bot 64:1263–1280

    CAS  PubMed  Google Scholar 

  • Wasternack C, Hause B (2013) Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in annals of botany. Ann Bot 111:1021–1058

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wei G, Kloepper JW, Tuzun S (1991) Induction of systemic resistance of cucumber to Colletotrichum orbiculare by select strains of plant-growth promoting rhizobacteria. Phytopathology 81:1508–1512

    Google Scholar 

  • Wisniewski-Dye F, Vial L (2008) Phase and antigenic variation mediated by genome modifications. Anton Leeuw Int J G 94:493–515

    CAS  Google Scholar 

  • Zamioudis C, Pieterse CM (2012) Modulation of host immunity by beneficial microbes. Mol Plant Microbe Interact 25(2):139–150. doi:10.1094/MPMI-06-11-0179

    Article  CAS  PubMed  Google Scholar 

  • Zipfel C (2009) Early molecular events in PAMP-triggered immunity. Curr Opin Plant Biol 12:414–420

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vivek Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Kumar, M., Teotia, P., Varma, A., Tuteja, N., Kumar, V. (2016). Induced Systemic Resistance by Rhizospheric Microbes. In: Choudhary, D.K., Varma, A. (eds) Microbial-mediated Induced Systemic Resistance in Plants. Springer, Singapore. https://doi.org/10.1007/978-981-10-0388-2_13

Download citation

Publish with us

Policies and ethics