Skip to main content

Biological Control of Chickpea Fusarium Wilts Using Rhizobacteria “PGPR”

  • Chapter
  • First Online:
Microbial-mediated Induced Systemic Resistance in Plants

Abstract

Fusarium wilt caused by Fusarium oxysporum f. sp. ciceris is one of the main threats to chickpea and affects sustainable food production. To combat the phytopathogens, successful measures the so-called “biocontrol” are developed over the years wherein numerous plant growth-promoting rhizobacteria (PGPRs) have been investigated for their capacities to protect plants from pathogens and stimulate plant growth. A putative PGPR qualifies as PGPR when it is able to produce a positive effect on the plant upon inoculation, hence demonstrating good competitive skills over the existing rhizosphere communities. This competence comprises the effective root colonization combined with the ability to survive and proliferate along growing plant roots over a considerable time period. In the present chapter, the author focused on PGPRs as biocontrol agents against F. oxysporum f. sp. ciceris (FOC).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Adams DJ (2004) Fungal cell wall chitinases and glucanases. Microbiology 150:2029–2035

    CAS  PubMed  Google Scholar 

  • Aktuganov GE, Galimzyanova NF, Melent’ev AI, Kuz’mina LY (2007) Extracellular hydrolases of strain Bacillus sp.739 and their involvement in the lysis of micromycete cell walls. Mikrobiologiya 76(4):471–479

    CAS  Google Scholar 

  • Altinok HH, Dikilitas M, Yildiz HN (2013) Potential of Pseudomonas and Bacillus isolates as biocontrol agents against Fusarium wilt of eggplant. Biotechnol Biotechnol Equip 27(4):3952–3958

    CAS  Google Scholar 

  • Anjajah V, Cornelis P, Koedam N (2003) Effect of genotype and root colonization in biological control of Fusarium wilt in pigeonpea and chickpea by Pseudomonas aeruginosa PNA1. Can J Microbiol 49:85–91

    Google Scholar 

  • Antoun H, Kloepper JW (2001) Plant growth promoting rhizobacteria. In: Brenner S, Miller JH (eds) Encyclopedia of genetics. Academic, New York, pp 1477–1480

    Google Scholar 

  • Arfaoui A, Sifi B, El Hassni M, El Hadrami I, Boudabous A, Chérif M (2005) Biochemical analysis of chickpea protection against Fusarium wilt afforded by two Rhizobium isolates. Plant Pathol J 4(1):35–42

    Google Scholar 

  • Baayen RP, ODonnell K, Bonants PJM, Cigelnik E, Kroon LPNM, Roebroeck EJA, Waalwijk C (2000) Gene genealogies and AFLP analyses in the Fusarium oxysporum complex identify monophyletic and nonmonophyletic formae speciales causing root rot and wilt diseases. Phytopathology 90:891–899

    CAS  PubMed  Google Scholar 

  • Bakker AW, Schippers B (1987) Microbial cyanide production in the rhizosphere in relation to potato yield reduction and Pseudomonas spp. mediated plant growth stimulation. Soil Biol Biochem 19:451–457

    CAS  Google Scholar 

  • Bloemberg GV, Lugtenberg BJ (2001) Molecular basis of plant growth promotion and biocontrol by rhizobacteria. Curr Opin Plant Biol 4:343–350

    CAS  PubMed  Google Scholar 

  • Bogas AC, Watanabe MAE, Barbosa A, Vilas-Boas LA, Bonatto AC, Dekker R, Souza EM, Fungaro MHP (2007) Structural characterization of the bglH gene encoding a beta-glucosidase-like enzyme in an endophytic Bacillus pumilus strain. Genet Mol Biol 30(1):100–104

    CAS  Google Scholar 

  • Booth C (1971) The genus Fusarium. Kew (surrey): common Wealth Mycologica Institute, England. p 137

    Google Scholar 

  • Chehri K, Abbasi S, Reddy KRN, Salleh B (2010) Occurrence and pathogenicity of various pathogenic fungi on cucurbits from Kermanshah province, Iran. Afr J Microbiol Res 4:1215–1222

    Google Scholar 

  • Chernin L, Chet I (2002) Microbial enzymes in biocontrol of plant pathogens and pests. In: Burns RG, Dick RP (eds) Enzymes in the environment: activity, ecology, and applications. Marcel Dekker, New York, pp 171–225

    Google Scholar 

  • Cohen-Kupiec R, Broglie K, Friesem D, Broglie R, Chet I (1999) Molecular characterisation of a novel β-1,3-exoglucanase related to mycoparasitism of Trichoderma harzianum. Gene 226:147–154

    CAS  PubMed  Google Scholar 

  • Compant S, Duffy B, Nowak J, Clement C, Ait Barka E (2005) Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microbiol 71(9):4951–4959

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cook RJ (1993) Making greater use of introduced microorganisms for biological control of plant pathogens. Annu Rev Phytopathol 31:53–80

    CAS  PubMed  Google Scholar 

  • Demers JE, Garzon CD, Jiménez-Gasco MM (2014) Striking genetic similarity between races of Fusarium oxysporum f. sp. ciceris confirms a monophyletic origin and clonal evolution of the chickpea vascular wilt pathogen. Eur J Plant Pathol 139:303–318

    Google Scholar 

  • Dennis C, Webster J (1971) Antagonistic properties of species group of Trichoderma, production of volatile antibiotics. Trans Br Mycol Soc 157:25–39

    Google Scholar 

  • Dileep Kumar BS (1999) Fusarial wilt suppression and crop improvement through two rhizobacterial strains in chickpea growing in soils infested with Fusarium oxysporum f. sp. ciceris. Biol Fertil Soils 29(1):87–91

    Google Scholar 

  • Dobbelaere S, Vanderleyden J, Okon Y (2003) Plant growth-promoting effects of diazotrophs in the rhizosphere. CRC Crit Rev Plant Sci 22:107–149

    CAS  Google Scholar 

  • Dowling DN, O’Gara F (1994) Metabolites of Pseudomonas involved in the biocontrol of plant disease. Trends Biotechnol 12:133–141

    CAS  Google Scholar 

  • Germida JJ, Walley FL (1996) Plant growth-promoting rhizobacteria alter rooting patterns and arbuscular mycorrhizal fungi colonization of field-grown spring wheat. Biol Fertil Soils 23(2):113–120

    CAS  Google Scholar 

  • Glick BR (1995) The enhancement of plant growth by free-living bacteria. Can J Microbiol 41:109–117

    CAS  Google Scholar 

  • Glick BR, Patten CL, Holgin G, Penrose DM (1999) Biochemical and genetic mechanisms used by plant growth promoting bacteria. Imperial College Press, London, p 267

    Google Scholar 

  • Gull FY, Hafeez I, Saleem M, Malik KA (2004) Phosphorus uptake and growth promotion of chickpea by co-inoculation of mineral phosphate solubilizing bacteria and a mixed rhizobial culture. Aust J Exp Agric 44:623–628

    CAS  Google Scholar 

  • Gupta O (1991) Symptomless carriers of chickpea vascular wilt pathogen (Fusarium oxysporum f. sp. ciceris). Legum Res 14:193–194

    Google Scholar 

  • Gupta S, Chakraborti D, Rangi RK, Basu D, Das S (2009) A molecular insight into the early events of chickpea (Cicer arietinum) and Fusarium oxysporum f. sp. ciceri (race 1) interaction through cDNAAFLP analysis. Phytopathology 99:1245–1257

    CAS  PubMed  Google Scholar 

  • Halila MH, Strange RN (1996) Identification of the causal agent of wilt of chickpea in Tunisia as F. oxysporum f. sp. ciceris race 0. Phytopathol Mediterr 35:67–74

    Google Scholar 

  • Hammerschmidt R (1999) Induced disease resistance: how do induced plants stop pathogens? Physiol Mol Plant Pathol 55:77–84

    CAS  Google Scholar 

  • Handelsman J, Stabb EV (1996) Biocontrol of soilborne plant pathogens. Plant Cell 8:1855–1869

    CAS  PubMed  PubMed Central  Google Scholar 

  • Haware MP (1990) Fusarium wilt and other important diseases of chickpea in the Mediterranean area. Options Mediterr Ser Semin 9:163–166

    Google Scholar 

  • Haware MP, Nene YL (1982) Symptomless carriers of the chickpea wilt Fusarium. Plant Dis 66:809–810

    Google Scholar 

  • Haware MP, Nene YL, Rajeswari R (1978) Eradication of Fusarium oxysporum f. sp. ciceris transmitted in chickpea seed. Phytopathology 68:1364–1368

    Google Scholar 

  • Hervas A, Landa BB, Jiménez-Díaz RM (1997) Influence of chickpea genotype and Bacillus sp. on protection from Fusarium wilt by seed treatment with nonpathogenic Fusarium oxysporum. Eur J Plant Pathol 103:631–642

    Google Scholar 

  • Hervas A, Landa B, Datnoff LE, Jiménez-Diaz RM (1998) Effects of commercial and indigenous microorganisms on Fusarium wilt development in chickpea. Biol Control 13:166–176

    Google Scholar 

  • Hoster F, Schmitz JE, Daniel R (2005) Enrichment of chitinolytic microorganisms isolation and characterization of a chitinase exhibiting antifungal activity against phytopathogenic fungi from a novel streptomyces strain. Appl Microbiol Biotechnol 66:434–442

    CAS  PubMed  Google Scholar 

  • Huang CJ, Wang TK, Chung SC, Chen CY (2004) Identification of an antifungal chitinase from a potential biocontrol agent, Bacillus cereus 28–9. J Biochem Mol Biol 38(1):82–88

    Google Scholar 

  • Idris HA, Labuschagne N, Korsten L (2007) Screening rhizobacteria for biological control of Fusarium root and crown rot of sorghum in Ethiopia. Biol Control 40:97–106

    Google Scholar 

  • Idris HA, Labuschagne N, Korsten L (2008) Suppression of Pythium ultimum root rot of sorghum by rhizobacterial isolates from Ethiopia and South Africa. Biol Control 45(1):72–84

    Google Scholar 

  • Inam-ul-Haq M, Javed N, Ahmad R, Rehman A (2003) Evaluation of different strains of Pseudomonas fluorescens for the biocontrol of fusarium wilt of chickpea. Plant Pathol J 2:65–74

    Google Scholar 

  • Jalali BL, Chand H (1992) Chickpea wilt. In: Singh US, Mukhopadhayay AN, Kumar J, Chaube HS (eds) Plant diseases of international importance, vol I, Diseases of cereals and pulses. Prentice Hall, Englewood Cliffs, pp 429–444

    Google Scholar 

  • Jamali F, Sharifi-Tehrani A, Okhovvat M, Zakeri Z, Saberi-Riseh R (2004) Biological control of chickpea Fusarium wilt by antagonistic bacteria under greenhouse condition. Commun Agric Appl Biol Sci 69(4):649–651

    CAS  PubMed  Google Scholar 

  • Jiang L, Wu J, Fan S, Li W, Dong L, Cheng Q, Xu P, Zhang S (2015) Isolation and characterization of a novel pathogenesis-related protein gene (GmPRP) with induced expression in soybean (Glycine max) during infection with Phytophthora sojae. PLoS ONE 10(6):e0129932

    PubMed  PubMed Central  Google Scholar 

  • Jiménez-Díaz RM, Alcala-Jiménez AR, Hervas A, Trapero-Casas JL (1993) Pathogenic variability and hosts resistance in the Fusarium oxysporum f. sp. ciceris/Cicer arietinum pathosystem. In: Proceedings of the 3rd European seminar Fusarium Mycotoxins, taxonomy, pathogenicity and host resistance. Hodowsla Roslin Aklimatyazacja i Nasiennictwo. Plant Breeding and Acclimatization Institute, Radzikov, Poland, pp 87–94

    Google Scholar 

  • Jiménez-Díaz RM, Castillo P, Jiménez-Gasco MDM, Landa B, Navas-Cortés JA (2015) Fusarium wilt of chickpeas: biology, ecology and management, crop protection. http://dx.doi.org/10.1016/j.cropro.2015.02.023

  • Jiménez-Gasco MM, Jiménez-Diaz RM (2003) Development of a specific polymerase chain reaction-based assay for the identification of Fusarium oxysporum f. sp. ciceris and its pathogenic races 0, 1A, 5, and 6. Am Phytopathol Soc 93(2):200–209

    Google Scholar 

  • Jiménez-Gasco MM, Pérez-Artés E, Jiménez-Díaz RM (2001) Identification of pathogenic races 0, 1B/C, 5, and 6 of Fusarium oxysporum f. sp. ciceris with random amplified polymorphic DNA (RAPD). Eur J Plant Pathol 107:237–248

    Google Scholar 

  • Jiménez-Gasco MM, Milgroom MG, Jiménez-Díaz RM (2002) Gene genealogies support Fusarium oxysporum f. sp. ciceris as a monophyletic group. Plant Pathol 51:72–77

    Google Scholar 

  • Johri BN, Sharma A, Virdi JS (2003) Rhizobacterial diversity in India and its influence on soil and plant health. Adv Biochem Eng/Biotechnol 84:49–89

    CAS  PubMed  Google Scholar 

  • Jorge I, Rosa O, Navas-Cortes JA, Jimenez-Díaz RM, Tena M (2005) Extracellular xylanases from two pathogenic races of F. oxysporum f. sp. ciceris: enzyme production in culture and purification and characterization of a major isoform as an alkaline endo-β-(1,4)-xylanase of low molecular weight. Antonie Van Leeuwenhoek 88(1):48

    PubMed  Google Scholar 

  • Joseph B, Patra RR, Lawrence R (2007) Characterization of plant growth promoting rhizobacteria associated with chickpea (Cicer arietinum L). Int J Plant Protect 1(2):141–152

    Google Scholar 

  • Kaiser WJ, Alcala-Jiménez AR, Hervas-Vargas A, Trapero-Casas JL, Jiménez-Díaz RM (1994) Screening of wild Cicer species for resistance to races 0 and 5 of Fusarium oxysporum f. sp. ciceris. Plant Dis 78:962–967

    Google Scholar 

  • Kandoliya UK, Vakharia DN (2013) Antagonistic effect of Pseudomonas fluorescens against Fusarium oxysporum f.sp. ciceri causing wilt in chickpea. Legum Res 36(6):569–575

    Google Scholar 

  • Kang SC, Ha CG, Lee TG, Maheshwari DK (2002) Solubilization of insoluble inorganic phosphates by a soil fungus Fomitopsis sp. PS 102. Curr Sci 82:439–442

    CAS  Google Scholar 

  • Karimi K, Amini J, Harighi B, Bahramnejad B (2012) Evaluation of biocontrol potential of Pseudomonas and Bacillus spp. against Fusarium wilt of chickpea. Aust J Crop Sci 6(4):695

    Google Scholar 

  • Kelly AG, Alcalà-Jiménez AR, Bainbridge BW, Heale JB, Pérez-Artés E, Jiménez-Díaz RM (1994) Use of genetic fingerprinting and random amplified polymorphic DNA to characterize pathotypes of Fusarium oxysporum f. sp. ciceris infecting chickpea. Phytopathology 84:1293–1298

    CAS  Google Scholar 

  • Khanzada KA, Rajput MA, Shah GS, Lodhi AM, Mehbob F (2002) Effect of seed dressing fungicides for the control of seed borne mycoflora of wheat. Asian J Plant Sci 1(4):441–444

    Google Scholar 

  • Kistler HC (2001) Evolution of host specificity in Fusarium oxysporum. In: Summerell BA, Leslie JF, Beckhouse D, Bryden WL, Burgess LW (eds) Fusarium. Paul E. Nelson Memorial Symposium. APS Press, St Paul, pp 70–82

    Google Scholar 

  • Kloepper JW (1993) Plant growth-promoting rhizobacteria as biological control agents. In: Metting B (ed) Soil microbial technologies. Marcel Dekker, New York, pp 255–274

    Google Scholar 

  • Kloepper JW (1996) Host specificity in microbe-microbe interactions. BioScience 46:406–409

    Google Scholar 

  • Kloepper JW, Lifshitz R, Zablotowicz RM (1989) Free living bacterial inocula for enhancing crop productivity. Trends Biotechnol 7:39–44

    Google Scholar 

  • Kloepper JW, Rodrıguez-K’abana R, Zehnder GW, Murphy JF, Sikora E, Fernandez C (1999) Plant root-bacterial interactions in biological control of soilborne diseases and potential extension to systemic and foliar diseases. Australias Plant Pathol 28:21–26

    Google Scholar 

  • Kobayashi DY, Reedy RM, Bick JA, Oudemans PV (2002) Characterization of a chitinase gene from Stenotrophomonas maltophilia strain 34S1 and its involvement in biological control. Appl Environ Microbiol 68:1047–1054

    CAS  PubMed  PubMed Central  Google Scholar 

  • Koga D, Mitsutomi M, Kono M, Matsumiya M (1999) Biochemistry of chitinases. In: Jollès P, Muzzarelli RAA (eds) Chitin and chitinases. Birkhäuser Verlag, Berlin, pp 111–123

    Google Scholar 

  • Koumoutsi A, Chen XH, Henne A, Liesegang H, Hitzeroth G, Franke P et al (2004) Structural and functional characterization of gene clusters directing nonribosomal synthesis of bioactive cyclic lipopeptides in Bacillus amyloliquefaciens strain FZB42. J Bacteriol 186:1084–1096. doi:10.1128/JB.186.4.1084-1096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Landa BB, Hervas A, Bethiol W, Jiménez-Diaz RM (1997a) Antagonistic activity of bacteria from the chickpea rhizosphere against Fusarium oxysporum f. sp. ciceris. Phytoparasitica 25(4):305–318

    Google Scholar 

  • Landa BB, Hervas A, Jimenez-Diaz RM (1997a) Effect of Bacillus spp. cell-free culture filtrates and of different bacterial delivery system against Fusarium oxysporum f. sp. ciceris. In: Anonymous (ed) Proceedings 10th congress of the Mediterranean Phytopathological Union, 1–5 June, Montpellier-Le Corum, Societe Francaise de Phytopathologie, ORSTOM, France, pp 723–726

    Google Scholar 

  • Leclere V, Bechet M, Adam A, Guez JS, Wathelet B, Ongena M et al (2005) Mycosubtilin overproduction by bacillus subtilis BBG100 enhances the organism’s antagonistic and biocontrol activities. Appl Environ Microbiol 71(8):4577–4584

    CAS  PubMed  PubMed Central  Google Scholar 

  • Leifert C, Li H, Chidburee S, Hampson S, Workman S, Sigee D, Epton HAS, Harbour A (1995) Antibiotic production and biocontrol activity by Bacillus subtilis CL27 and Bacillus pumilus CL45. J Appl Bacteriol 78:97–108

    CAS  PubMed  Google Scholar 

  • Lim HS, Kim YS, Kim SD (1991) Pseudomonas stutzeri YPL-1 genetic transformation and antifungal mechanism against Fusarium solani, an agent of plant root rot. Appl Environ Microbiol 57:510–516

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu W, Mu W, Zhu B, Liu F (2008) Antifungal activities and components of VOCs produced by Bacillus subtilis G8. Curr Res Bacteriol 1:28–34

    CAS  Google Scholar 

  • Lorck H (2004) Production of hydrocyanic acid by bacteria. Plant Physiol 1:142–146

    Google Scholar 

  • Maheshwari DK (ed) (2010) Plant growth and health promoting bacteria, microbiology monographs. Springer, Berlin, p 18. doi:10.1007/978-3-642-13612-2_2

    Book  Google Scholar 

  • Maliha R, Samina K, Najma A, Sadia A, Farooq L (2004) Organic acids production and phosphate solubilization by phosphate solubilizing microorganisms under in vitro conditions. Pak J Biol Sci 7:187–196

    Google Scholar 

  • Martin FN, Loper JE (1998) Soil-borne plant diseases caused by Pythium spp.: ecology, epidemiology and prospects for biological control. Crit Rev Plant Sci 18:111–191

    Google Scholar 

  • Mavrodi DV, Peever TL, Mavrodi OV, Parejko JA, Raaijmakers JM, Lemanceau P, Mazurier S, Heide L, Blankenfeldt W, Weller DM, Thomashow LS (2010) Diversity and evolution of the phenazine biosynthesis pathway. Appl Environ Microbiol 76:866–879

    CAS  PubMed  Google Scholar 

  • McKerral A (1923) A note on Fusarium wilt of gram in Burma and measures taken to combat it. Indian Agric J 28:608–613

    Google Scholar 

  • McRae W (1932) Report on Imperial Mycologists Sci Agric Res Inst Pusa: 31–78

    Google Scholar 

  • Milner JL, Silo-Suh L, Lee JC, He H, Clardy J, Handelsman J (1996) Production of kanosamine by Bacillus cereus UW85. Appl Environ Microbiol 62(8):3061–3065

    CAS  PubMed  PubMed Central  Google Scholar 

  • Moradi H, Bahramnejad B, Amini J, Siosemardeh A, Haji-Allahverdipoor K (2012) Suppression of chickpea (Cicer arietinum L.) Fusarium wilt by Bacillus subtillis and Trichoderma harzianum. Plant Omics J 5(2):68–74

    CAS  Google Scholar 

  • Narasimhan R (1929) A preliminary note on Fusarium parasite on Bengal gram (C. arietinum L.). Madras Agric Dept Year Book, p 5

    Google Scholar 

  • Navarro L, Dunoyer P, Jay F, Arnold B, Dharmasiri N, Estelle M et al (2006) A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science 312:436–439

    CAS  PubMed  Google Scholar 

  • Navas-Cortés JA, Alcala-Jiménez AR, Hau B, Jiménez-Díaz RM (2000) Influence of inoculum density of races 0 and 5 of Fusarium oxysporum f. sp. ciceris on development of Fusarium wilt in chickpea cultivars. Eur J Plant Pathol 106:135–146

    Google Scholar 

  • Nene YL, Reddy MV (1987) Chickpea diseases and their control. In: Saxena MC, Singh KB (eds) The chickpea. CAB International, Wallingford, pp 233–270

    Google Scholar 

  • Nene YL, Haware MP, Reddy MV (1981) Chickpea diseases: resistance screening techniques, Information bulletin no. 10. International Crops Research Institute for the Semi-Arid Tropics, Patancheru, p 10

    Google Scholar 

  • Nene YL, Sheila VK, Sharma SB (1989) A world list of chickpea and pigeon pea pathogens. ICRISAT Legume Pathol Prog Rep, Patancheru, p 7

    Google Scholar 

  • Nene YL, Reddy MV, Haware MP, Ghanekar AM, Amin KS (1991) Field diagnosis of chickpea diseases and their control. In: Information bulletin no. 28. ed. by International Crops Research Institute for the Semi Arid Tropics, Patancheru

    Google Scholar 

  • Nene YL, Sheila VK, Sharma SB (1996) A world list of chickpea and pigeonpea pathogens, 5th edn. ICRISAT, Patancheru, p 27

    Google Scholar 

  • O’Donnell K, Kistler HC, Cigelnik E, Ploetz RC (1998) Multiple evolutionary origins of the fungus causing Panama disease of banana: concordant evidence from nuclear and mitochondrial gene genealogies. Proc Natl Acad Sci U S A 95:2044–2049

    PubMed  PubMed Central  Google Scholar 

  • Okigbo RN (2004) A review of biological control methods for post harvest yams Dioscorea spp. in storage in south eastern Nigeria. KMITL Sci J 4(1):207–215

    Google Scholar 

  • Ongena M, Jacques P (2008) Lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol 16:115–125

    CAS  PubMed  Google Scholar 

  • Patil S, Shivannavar CT, Bheemaraddi MC, Gaddad SM (2015) Antiphytopathogenic and plant growth promoting attributes of Bacillus strains isolated from rhizospheric soil of chickpea. J Agric Sci Tech 17:1365–1377

    Google Scholar 

  • Pieterse CMC, van Wees SCM, van Pelt JA, Knoester M et al (1998) A novel signaling pathway controlling induced systemic resistance in Arabidopsis. Plant Cell 10:1571–1580

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pikovskaya RI (1948) Mobilization of phosphorus in soil connection with vital capacity of source microbial species. Microbiologiya 17:362–370

    CAS  Google Scholar 

  • Prasad N, Padwick GW (1939) The genus Fusarium 11. A species of Fusarium as a cause of wilt of gram (C. arietinum L.). Indian Agric Sci 9:731

    Google Scholar 

  • Raaijmakers JM, Weller DM (1998) Natural plant protection by 2,4-diacetylphloroglucinol-producing Pseudomonas spp. in take-all decline soils. Mol Plant Microbe Interact 11:144–152

    CAS  Google Scholar 

  • Raaijmakers JM, Vlami M, de Souza JT (2002) Antibiotic production by bacterial biocontrol agents. Anton van Leeuwenhoek 81:537–547

    CAS  Google Scholar 

  • Raju S, Jayalakshmi SK, Sreeramulu K (2008) Comparative study on the induction of defense related enzymes in two different cultivars of chickpea (Cicer arietinum L.) genotypes by salicylic acid, spermine and Fusarium oxysporum f sp ciceri. Aust J Crop Sci 2:121–140

    CAS  Google Scholar 

  • Rashotte AM, Brady SR, Reed RC, Ante SJ, Muday GK (2000) Basipetal auxin transport is required for gravitropism in roots of Arabidopsis. Plant Physiol 122:481–490

    CAS  PubMed  PubMed Central  Google Scholar 

  • Richardson AE (2001) Prospects for using soil microorganisms to improve the acquisition of phosphorus by plants. Aust J Plant Physiol 28:897–906

    Google Scholar 

  • Rokhzadi A, Toashih V (2011) Nutrient uptake and yield of chickpea (Cicer arietinum L.) inoculated with plant growth promoting rhizobacteria. Aust J Crop Sci 5(1):44–48

    Google Scholar 

  • Rokhzadi A, Asgazadeh A, Darvish F, Nour-Mohammed G, Majidi E (2008) Influence of plant growth promoting rhizobacteria on dry matter accumulation and yield of chickpea (Cicer arietinum L.) under field conditions. Am Eurasian J Agric Environ Sci 3:253–257

    Google Scholar 

  • Ryu CM, Farag MA, Hu CH, Reddy MS, Kloepper JW, Pare PW (2004) Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol 134:1017–1026. doi:10.1104/pp.103.026583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saharan BS, Nehra V (2011) Plant growth promoting rhizobacteria: a critical review. Life Sci Med 21:1–30

    Google Scholar 

  • Santos FMA, Ramos B, Sanchez MAG, Eslava AP, Minguez JMD (2002) A DNA based procedure for in planta detection of Fusarium oxysporum f. sp. phaseoli. Phytopathol 92:237–244

    Google Scholar 

  • Silo-Suh LA, Lethbridge BJ, Raffel SJ, He H, Clardy J, Handelsman J (1994) Biological activities of two fungistatic antibiotics produced by Bacillus cereus UW85. Appl Environ Microbiol 60(6):2023–2030

    CAS  PubMed  PubMed Central  Google Scholar 

  • Silva HAS, Romeiro RDS, Macagnan D, Halfeld-Vieira BDA, Pereira MCB, Mounteer A (2004) Rhizobacterial induction of systemic resistance in tomato plants: non-specific protection and increase in enzyme activities. Biol Control 29:288–295

    CAS  Google Scholar 

  • Singh KB, Dahiya BS (1973) Breeding for wilt resistance in chickpea. In: Symposium on wilt problem and breeding for wilt resistance in Bengal Gram. Indian Research Institute, New Delhi, pp 13–14

    Google Scholar 

  • Singh PP, Shin YC, Park CS, Chung YR (1999) Biological control of Fusarium wilts of cucumber by chitinolytic bacteria. Phytopathology 89:92–99

    CAS  PubMed  Google Scholar 

  • Singh RK, Kumar DP, Solanki MK, Singh P, Srivastva AK, Kumar S, Kashyap PL, Saxena AK, Singhal PK, Arora DK (2013) Optimization of media components for chitinase production by chickpea rhizosphere associated Lysinibacillus fusiformis B-CM18. J Basic Microbiol 53:451–460

    CAS  PubMed  Google Scholar 

  • Smitha KP, Mohan R, Devadason A, Raguchander T (2015) Exploiting novel rhizosphere Bacillus species to suppress the root rot and wilt pathogens of chickpea. Afr J Microbiol Res 9(15):1098–1104. doi:10.5897/AJMR2015.7445

    Article  Google Scholar 

  • Ramos Solano BR, Barriuso J, Gutiérrez Mañero FJ (2008) Physiological and molecular mechanisms of Plant Growth Promoting Rhizobacteria (PGPR). In: Iqbal A, John P, Shamsul H (eds) Plant-bacteria interactions. Strategies and techniques to promote plant growth, pp 41–54

    Google Scholar 

  • Stevenson PC, Turner HC, Haware MP (1997) Phytoalexin accumulation in the roots of chickpea (Cicer arietinum L.) seedlings associated with resistance to Fusarium wilt (Fusarium oxysporum f. sp. ciceris). Physiol Mol Plant Pathol 50:167–178

    CAS  Google Scholar 

  • Swain MR, Ray RC (2007) Biocontrol and other beneficial activities of Bacillus subtilis isolated from cow dung microflora. Microbiol Res 164(2):121–130

    PubMed  Google Scholar 

  • Taghavi S, Garafola C, Monchy S, Newman L, Hoffman A, Weyens N et al (2009) Genome survey and characterization of endophytic bacteria exhibiting a beneficial effect on growth and development of poplar. Appl Environ Microbiol 75:748–757

    CAS  PubMed  Google Scholar 

  • Toyoda H, Utsumi R (1991) Method for the prevention of Fusarium diseases and microorganisms used for the same. U.S. Patent #4,988,586

    Google Scholar 

  • Trapero-Casas A, Jiménez-Díaz RM (1985) Fungal wilt and root rot diseases of chickpea in southern Spain. Phytopathology 75:1146–1151

    Google Scholar 

  • Upadhyaya HD, Dwivedi SL, Baum M, Varshney RK, Udupa SM, Gowda CLL, Hoisington D, Singh S (2008) Genetic structure, diversity, and allelic richness in composite collection and reference set in chickpea (Cicer arietinum L.). BMC Plant Biol 8:106

    PubMed  PubMed Central  Google Scholar 

  • Verma SC, Ladha JK, Tripathi AK (2001) Evaluation of plant growth promoting and colonization, ability of endophytic diazotrophs from deep water rice. J Biotechnol 91:127–141

    CAS  PubMed  Google Scholar 

  • Verma JP, Yadav J, Tiwari KN (2010) Application of Rhizobium sp. BHURC01 and plant growth promoting rhizobacteria on nodulation, plant biomass and yields of chickpea (Cicer arietinum L.). Int J Agric Res 5:148–156

    CAS  Google Scholar 

  • Wani PA, Khan MS, Zaidi A (2007) Synergistic effects of the inoculation with nitrogen-fixing and phosphate-solubilizing rhizobacteria on the performance of field-grown chickpea. J Plant Nutr Soil Sci 170(2):283–287

    CAS  Google Scholar 

  • Westerlund FV, Campbell RN, Kimble KA (1974) Fungal root rot and wilt of chickpea in California. Phytopathology 64:432–436

    Google Scholar 

  • Yadav J, Verma JP, Tiwari KN (2010) Effect of plant growth promoting Rhizobacteria on seed germination and plant growth Chickpea (Cicer arietinum L.) under in vitro conditions. Biol Forum Int J 2(2):15–18

    Google Scholar 

  • Yadav J, Verma JP, Tiwari KN (2011) Plant growth promoting activities of fungi and their effect on chickpea plant growth. Asian J Biol Sci 4(3):291–299

    Google Scholar 

  • Zaim S, Belabid L, Bellahcene M (2013) Biocontrol of chickpea Fusarium wilt by Bacillus spp. rhizobacteria. J Plant Prot Res 53(2):177–183

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Souad Zaim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Zaim, S., Belabid, L., Bayaa, B., Bekkar, A.A. (2016). Biological Control of Chickpea Fusarium Wilts Using Rhizobacteria “PGPR”. In: Choudhary, D.K., Varma, A. (eds) Microbial-mediated Induced Systemic Resistance in Plants. Springer, Singapore. https://doi.org/10.1007/978-981-10-0388-2_10

Download citation

Publish with us

Policies and ethics