Skip to main content

Mechanistic Study of Cellulose Hydrolysis by Carbon Catalysts

  • Chapter
  • First Online:

Part of the book series: Springer Theses ((Springer Theses))

Abstract

The structure-activity correlation by carbon catalysts for hydrolysis of glycosidic bonds in cellulosic molecules has been investigated. The characterization of carbon materials by titration and infrared spectroscopy indicates that weakly acidic hydrophilic functionalities contribute to catalytic activity; especially, vicinal oxygenated functional groups as in salicylic acid and phthalic acid specifically show high catalytic performance due to increase of frequency factor but not to decrease of activation energy. One of the functional groups forms a hydrogen bond with hydroxyl groups of the substrate and another group gains an opportunity to activate and hydrolyze a glycosidic bond. Besides, hydrophobic surface of carbon plays important roles for adsorption process of cellulosic molecules, and this function also enhances the possibility to hydrolyze the substrate. Finally, the author proposes reaction mechanism for cellulose hydrolysis by carbon catalyst.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Boehm H (1994) Some aspects of the surface chemistry of carbon blacks and other carbons. Carbon 32(5):759–769

    Article  CAS  Google Scholar 

  2. Cardona-Martinez N, Dumesic JA (1992) Applications of adsorption microcalorimetry to the study of heterogeneous catalysis. Adv Catal 38:149–244

    CAS  Google Scholar 

  3. Lin H-P, Kao C-P, Mou C-Y, Liu S-B (2000) Counterion effect in acid synthesis of mesoporous silica materials. J Phys Chem B 104(33):7885–7894

    Article  CAS  Google Scholar 

  4. Yang H, Zhang L, Zhong L, Yang Q, Li C (2007) Enhanced cooperative activation effect in the hydrolytic kinetic resolution of epoxides on [Co(salen)] catalysts confined in nanocages. Angew Chem Int Ed 46(36):6861–6865

    Article  CAS  Google Scholar 

  5. Gazit OM, Charmot A, Katz A (2011) Grafted cellulose strands on the surface of silica: effect of environment on reactivity. Chem Commun 47(1):376–378

    Article  CAS  Google Scholar 

  6. Gazit OM, Katz A (2011) Grafted Poly(1→4-β-glucan) strands on silica: a comparative study of surface reactivity as a function of grafting density. Langmuir 28(1):431–437

    Article  Google Scholar 

  7. Gazit OM, Katz A (2013) Understanding the role of defect sites in glucan hydrolysis on surfaces. J Am Chem Soc 135(11):4398–4402

    Article  CAS  Google Scholar 

  8. Loerbroks C, Rinaldi R, Thiel W (2013) The electronic nature of the 1,4-β-glycosidic bond and its chemical environment: DFT insights into cellulose chemistry. Chem Eur J 19(48):16282–16294

    Article  CAS  Google Scholar 

  9. Nishihara H, Yang Q-H, Hou P-X, Unno M, Yamauchi S, Saito R, Paredes JI, Martínez-Alonso A, Tascón JMD, Sato Y, Terauchi M, Kyotani T (2009) A possible buckybowl-like structure of zeolite templated carbon. Carbon 47(5):1220–1230

    Article  CAS  Google Scholar 

  10. Figueiredo JL, Pereira MFR, Freitas MMA, Órfão J (1999) Modification of the surface chemistry of activated carbons. Carbon 37(9):1379–1389

    Article  CAS  Google Scholar 

  11. Ishikawa S, Murayama T, Ohmura S, Sadakane M, Ueda W (2013) Synthesis of novel orthorhombic Mo and V based complex oxides coordinating alkylammonium cation in its heptagonal channel and their application as a catalyst. Chem Mater 25(11):2211–2219

    Article  CAS  Google Scholar 

  12. Knight DS, White WB (1989) Characterization of diamond films by Raman spectroscopy. J Mater Res 4(02):385–393

    Article  CAS  Google Scholar 

  13. Pimenta MA, Dresselhaus G, Dresselhaus MS, Cançado LG, Jorio A, Saito R (2007) Studying disorder in graphite-based systems by Raman spectroscopy. Phys Chem Chem Phys 9(11):1276–1290

    Article  CAS  Google Scholar 

  14. Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J Phys Chem 98(45):11623–11627

    Article  CAS  Google Scholar 

  15. Montgomery JA Jr, Frisch MJ, Ochterski JW, Petersson GA (1999) A complete basis set model chemistry. VI. Use of density functional geometries and frequencies. J Chem Phys 110(6):2822–2827

    Article  CAS  Google Scholar 

  16. Tomasi J, Mennucci B, Cammi R (2005) Quantum mechanical continuum solvation models. Chem Rev 105(8):2999–3094

    Article  CAS  Google Scholar 

  17. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98(7):5648–5652

    Article  CAS  Google Scholar 

  18. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37(2):785–789

    Article  CAS  Google Scholar 

  19. Hehre WJ, Ditchfield R, Pople JA (1972) Self-consistent molecular orbital methods. XII. Further extensions of gaussian-type basis sets for use in molecular orbital studies of organic molecules. J Chem Phys 56(5):2257–2261

    Article  CAS  Google Scholar 

  20. Grimme S, Antony J, Ehrlich S, Krieg H (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H–Pu. J Chem Phys 132(15):154104

    Article  Google Scholar 

  21. Jencks WP, Regenstein J (1968) Ionization constants of acids and bases. In: Sober MA (ed) Handbook of biochemistry. Chemical Rubber Company, Cleveland, pp 305–351

    Google Scholar 

  22. Capon B (1963) Intramolecular catalysis in glucoside hydrolysis. Tetrahedron Lett 4(14):911–913

    Article  Google Scholar 

  23. Suganuma S, Nakajima K, Kitano M, Yamaguchi D, Kato H, Hayashi S, Hara M (2008) Hydrolysis of cellulose by amorphous carbon bearing SO3H, COOH, and OH groups. J Am Chem Soc 130(38):12787–12793

    Article  CAS  Google Scholar 

  24. Kitano M, Yamaguchi D, Suganuma S, Nakajima K, Kato H, Hayashi S, Hara M (2009) Adsorption-enhanced hydrolysis of β-1,4-glucan on graphene-based amorphous carbon bearing SO3H, COOH, and OH groups. Langmuir 25(9):5068–5075

    Article  CAS  Google Scholar 

  25. Qrtiz P, Reguera E, Fernández-Bertrán J (2002) Study of the interaction of KF with carbohydrates in DMSO-d6 by 1H and 13C NMR spectroscopy. J Fluorine Chem 113(1):7–12

    Article  Google Scholar 

  26. Zhang J, Zhang H, Wu J, Zhang J, He J, Xiang J (2010) NMR spectroscopic studies of cellobiose solvation in EmimAc aimed to understand the dissolution mechanism of cellulose in ionic liquids. Phys Chem Chem Phys 12(8):1941–1947

    Article  CAS  Google Scholar 

  27. Liepinsh E, Otting G, Wüthrich K (1992) NMR spectroscopy of hydroxyl protons in aqueous solutions of peptides and proteins. J Biomol NMR 2(5):447–465

    Article  CAS  Google Scholar 

  28. Liepinsh E, Otting G (1996) Proton exchange rates from amino acid side chains–implications for image contrast. Magnet Reson Med 35(1):30–42

    Article  CAS  Google Scholar 

  29. McCormick CL, Callais PA, Hutchinson BH Jr (1985) Solution studies of cellulose in lithium chloride and N,N-dimethylacetamide. Macromolecules 18(12):2394–2401

    Article  CAS  Google Scholar 

  30. Röder T, Morgenstern B, Schelosky N, Glatter O (2001) Solutions of cellulose in N,N-dimethylacetamide/lithium chloride studied by light scattering methods. Polymer 42(16):6765–6773

    Article  Google Scholar 

  31. Nevell TP, Upton WR (1976) The hydrolysis of cotton cellulose by hydrochloric acid in benzene. Carbohydr Res 49:163–174

    Article  CAS  Google Scholar 

  32. Woods RJ, Andrews CW, Bowen JP (1992) Molecular mechanical investigations of the properties of oxocarbenium ions. 2. Application to glycoside hydrolysis. J Am Chem Soc 114(3):859–864

    Article  CAS  Google Scholar 

  33. Charmot A, Katz A (2010) Unexpected phosphate salt-catalyzed hydrolysis of glycosidic bonds in model disaccharides: cellobiose and maltose. J Catal 276(1):1–5

    Article  CAS  Google Scholar 

  34. Kögel-Knabner I (1997) 13C and 15N NMR spectroscopy as a tool in soil organic matter studies. Geoderma 80(3):243–270

    Article  Google Scholar 

  35. Sing KSW (1985) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl Chem 57(4):603–619

    Article  CAS  Google Scholar 

  36. Bui S, Verykios X, Mutharasan R (1985) In situ removal of ethanol from fermentation broths. 1. Selective adsorption characteristics. Ind Eng Chem Process Des Dev 24(4):1209–1213

    Google Scholar 

  37. Chung P-W, Charmot A, Gazit OM, Katz A (2012) Glucan adsorption on mesoporous carbon nanoparticles: effect of chain length and internal surface. Langmuir 28(43):15222–15232

    Article  CAS  Google Scholar 

  38. Chung P-W, Yabushita M, To AT, Bae YJ, Jankolovits J, Kobayashi H, Fukuoka A, Katz A (2015) Long-chain glucan adsorption and depolymerization in zeolite-templated carbon catalysts. ACS Catal 5:6422–6425

    Article  CAS  Google Scholar 

  39. Chung P-W, Charmot A, Click T, Lin Y, Bae YJ, Chu J-W, Katz A (2015) Importance of internal porosity for glucan adsorption in mesoporous carbon materials. Langmuir 31(26):7288–7295

    Article  CAS  Google Scholar 

  40. Tormo J, Lamed R, Chirino AJ, Morag E, Bayer EA, Shoham Y, Steitz TA (1996) Crystal structure of a bacterial family-III cellulose-binding domain: a general mechanism for attachment to cellulose. EMBO J 15(21):5739–5751

    CAS  Google Scholar 

  41. Igarashi K, Uchihashi T, Koivula A, Wada M, Kimura S, Okamoto T, Penttilä M, Ando T, Samejima M (2011) Traffic jams reduce hydrolytic efficiency of cellulase on cellulose surface. Science 333(6047):1279–1282

    Article  CAS  Google Scholar 

  42. Zhu W, van de Graaf JM, van den Broeke LJP, Kapteijn F, Moulijn JA (1998) TEOM: a unique technique for measuring adsorption properties. Light alkanes in silicalite-1. Ind Eng Chem Res 37(5):1934–1942

    Article  CAS  Google Scholar 

  43. Yong Z, Mata V, Rodrigues AE (2002) Adsorption of carbon dioxide at high temperature—a review. Sep Purif Technol 26(2):195–205

    Article  CAS  Google Scholar 

  44. Sharma A, Kyotani T, Tomita A (2000) Comparison of structural parameters of PF carbon from XRD and HRTEM techniques. Carbon 38(14):1977–1984

    Article  CAS  Google Scholar 

  45. Tsuzuki S, Honda K, Uchimaru T, Mikami M, Tanabe K (2000) The magnitude of the CH/π interaction between benzene and some model hydrocarbons. J Am Chem Soc 122(15):3746–3753

    Article  CAS  Google Scholar 

  46. Brown W (1970) The separation of cellodextrins by gel permeation chromatography. J Chromatogr A 52:273–284

    Article  CAS  Google Scholar 

  47. Gurses A, Yalcin M, Sozbilir M, Dogar C (2003) The investigation of adsorption thermodynamics and mechanism of a cationic surfactant, CTAB, onto powdered active carbon. Fuel Process Technol 81(1):57–66

    Article  CAS  Google Scholar 

  48. Chen W-Y, Huang H-M, Lin C-C, Lin F-Y, Chan Y-C (2003) Effect of temperature on hydrophobic interaction between proteins and hydrophobic adsorbents: studies by isothermal titration calorimetry and the van’t Hoff equation. Langmuir 19(22):9395–9403

    Article  CAS  Google Scholar 

  49. Haselmeier R, Holz M, Marbach W, Weingaertner H (1995) Water dynamics near a dissolved noble gas. First direct experimental evidence for a retardation effect. J Phys Chem 99(8):2243–2246

    Article  CAS  Google Scholar 

  50. Southall NT, Dill KA, Haymet ADJ (2002) A view of the hydrophobic effect. J Phys Chem B 106(3):521–533

    Article  CAS  Google Scholar 

  51. Dill KA, Truskett TM, Vlachy V, Hribar-Lee B (2005) Modeling water, the hydrophobic effect, and ion solvation. Annu Rev Biophys Biomol Struct 34:173–199

    Article  CAS  Google Scholar 

  52. Chen W, Enck S, Price JL, Powers DL, Powers ET, Wong C-H, Dyson HJ, Kelly JW (2013) Structural and energetic basis of carbohydrate-aromatic packing interactions in proteins. J Am Chem Soc 135(26):9877–9884

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mizuho Yabushita .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Yabushita, M. (2016). Mechanistic Study of Cellulose Hydrolysis by Carbon Catalysts. In: A Study on Catalytic Conversion of Non-Food Biomass into Chemicals. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-10-0332-5_3

Download citation

Publish with us

Policies and ethics