Mechanistic Study of Cellulose Hydrolysis by Carbon Catalysts

  • Mizuho YabushitaEmail author
Part of the Springer Theses book series (Springer Theses)


The structure-activity correlation by carbon catalysts for hydrolysis of glycosidic bonds in cellulosic molecules has been investigated. The characterization of carbon materials by titration and infrared spectroscopy indicates that weakly acidic hydrophilic functionalities contribute to catalytic activity; especially, vicinal oxygenated functional groups as in salicylic acid and phthalic acid specifically show high catalytic performance due to increase of frequency factor but not to decrease of activation energy. One of the functional groups forms a hydrogen bond with hydroxyl groups of the substrate and another group gains an opportunity to activate and hydrolyze a glycosidic bond. Besides, hydrophobic surface of carbon plays important roles for adsorption process of cellulosic molecules, and this function also enhances the possibility to hydrolyze the substrate. Finally, the author proposes reaction mechanism for cellulose hydrolysis by carbon catalyst.


Adsorption Carbon catalysts Cellulosic molecules Hydrolysis Vicinal weak acids 


  1. 1.
    Boehm H (1994) Some aspects of the surface chemistry of carbon blacks and other carbons. Carbon 32(5):759–769CrossRefGoogle Scholar
  2. 2.
    Cardona-Martinez N, Dumesic JA (1992) Applications of adsorption microcalorimetry to the study of heterogeneous catalysis. Adv Catal 38:149–244Google Scholar
  3. 3.
    Lin H-P, Kao C-P, Mou C-Y, Liu S-B (2000) Counterion effect in acid synthesis of mesoporous silica materials. J Phys Chem B 104(33):7885–7894CrossRefGoogle Scholar
  4. 4.
    Yang H, Zhang L, Zhong L, Yang Q, Li C (2007) Enhanced cooperative activation effect in the hydrolytic kinetic resolution of epoxides on [Co(salen)] catalysts confined in nanocages. Angew Chem Int Ed 46(36):6861–6865CrossRefGoogle Scholar
  5. 5.
    Gazit OM, Charmot A, Katz A (2011) Grafted cellulose strands on the surface of silica: effect of environment on reactivity. Chem Commun 47(1):376–378CrossRefGoogle Scholar
  6. 6.
    Gazit OM, Katz A (2011) Grafted Poly(1→4-β-glucan) strands on silica: a comparative study of surface reactivity as a function of grafting density. Langmuir 28(1):431–437CrossRefGoogle Scholar
  7. 7.
    Gazit OM, Katz A (2013) Understanding the role of defect sites in glucan hydrolysis on surfaces. J Am Chem Soc 135(11):4398–4402CrossRefGoogle Scholar
  8. 8.
    Loerbroks C, Rinaldi R, Thiel W (2013) The electronic nature of the 1,4-β-glycosidic bond and its chemical environment: DFT insights into cellulose chemistry. Chem Eur J 19(48):16282–16294CrossRefGoogle Scholar
  9. 9.
    Nishihara H, Yang Q-H, Hou P-X, Unno M, Yamauchi S, Saito R, Paredes JI, Martínez-Alonso A, Tascón JMD, Sato Y, Terauchi M, Kyotani T (2009) A possible buckybowl-like structure of zeolite templated carbon. Carbon 47(5):1220–1230CrossRefGoogle Scholar
  10. 10.
    Figueiredo JL, Pereira MFR, Freitas MMA, Órfão J (1999) Modification of the surface chemistry of activated carbons. Carbon 37(9):1379–1389CrossRefGoogle Scholar
  11. 11.
    Ishikawa S, Murayama T, Ohmura S, Sadakane M, Ueda W (2013) Synthesis of novel orthorhombic Mo and V based complex oxides coordinating alkylammonium cation in its heptagonal channel and their application as a catalyst. Chem Mater 25(11):2211–2219CrossRefGoogle Scholar
  12. 12.
    Knight DS, White WB (1989) Characterization of diamond films by Raman spectroscopy. J Mater Res 4(02):385–393CrossRefGoogle Scholar
  13. 13.
    Pimenta MA, Dresselhaus G, Dresselhaus MS, Cançado LG, Jorio A, Saito R (2007) Studying disorder in graphite-based systems by Raman spectroscopy. Phys Chem Chem Phys 9(11):1276–1290CrossRefGoogle Scholar
  14. 14.
    Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J Phys Chem 98(45):11623–11627CrossRefGoogle Scholar
  15. 15.
    Montgomery JA Jr, Frisch MJ, Ochterski JW, Petersson GA (1999) A complete basis set model chemistry. VI. Use of density functional geometries and frequencies. J Chem Phys 110(6):2822–2827CrossRefGoogle Scholar
  16. 16.
    Tomasi J, Mennucci B, Cammi R (2005) Quantum mechanical continuum solvation models. Chem Rev 105(8):2999–3094CrossRefGoogle Scholar
  17. 17.
    Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98(7):5648–5652CrossRefGoogle Scholar
  18. 18.
    Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37(2):785–789CrossRefGoogle Scholar
  19. 19.
    Hehre WJ, Ditchfield R, Pople JA (1972) Self-consistent molecular orbital methods. XII. Further extensions of gaussian-type basis sets for use in molecular orbital studies of organic molecules. J Chem Phys 56(5):2257–2261CrossRefGoogle Scholar
  20. 20.
    Grimme S, Antony J, Ehrlich S, Krieg H (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H–Pu. J Chem Phys 132(15):154104CrossRefGoogle Scholar
  21. 21.
    Jencks WP, Regenstein J (1968) Ionization constants of acids and bases. In: Sober MA (ed) Handbook of biochemistry. Chemical Rubber Company, Cleveland, pp 305–351Google Scholar
  22. 22.
    Capon B (1963) Intramolecular catalysis in glucoside hydrolysis. Tetrahedron Lett 4(14):911–913CrossRefGoogle Scholar
  23. 23.
    Suganuma S, Nakajima K, Kitano M, Yamaguchi D, Kato H, Hayashi S, Hara M (2008) Hydrolysis of cellulose by amorphous carbon bearing SO3H, COOH, and OH groups. J Am Chem Soc 130(38):12787–12793CrossRefGoogle Scholar
  24. 24.
    Kitano M, Yamaguchi D, Suganuma S, Nakajima K, Kato H, Hayashi S, Hara M (2009) Adsorption-enhanced hydrolysis of β-1,4-glucan on graphene-based amorphous carbon bearing SO3H, COOH, and OH groups. Langmuir 25(9):5068–5075CrossRefGoogle Scholar
  25. 25.
    Qrtiz P, Reguera E, Fernández-Bertrán J (2002) Study of the interaction of KF with carbohydrates in DMSO-d6 by 1H and 13C NMR spectroscopy. J Fluorine Chem 113(1):7–12CrossRefGoogle Scholar
  26. 26.
    Zhang J, Zhang H, Wu J, Zhang J, He J, Xiang J (2010) NMR spectroscopic studies of cellobiose solvation in EmimAc aimed to understand the dissolution mechanism of cellulose in ionic liquids. Phys Chem Chem Phys 12(8):1941–1947CrossRefGoogle Scholar
  27. 27.
    Liepinsh E, Otting G, Wüthrich K (1992) NMR spectroscopy of hydroxyl protons in aqueous solutions of peptides and proteins. J Biomol NMR 2(5):447–465CrossRefGoogle Scholar
  28. 28.
    Liepinsh E, Otting G (1996) Proton exchange rates from amino acid side chains–implications for image contrast. Magnet Reson Med 35(1):30–42CrossRefGoogle Scholar
  29. 29.
    McCormick CL, Callais PA, Hutchinson BH Jr (1985) Solution studies of cellulose in lithium chloride and N,N-dimethylacetamide. Macromolecules 18(12):2394–2401CrossRefGoogle Scholar
  30. 30.
    Röder T, Morgenstern B, Schelosky N, Glatter O (2001) Solutions of cellulose in N,N-dimethylacetamide/lithium chloride studied by light scattering methods. Polymer 42(16):6765–6773CrossRefGoogle Scholar
  31. 31.
    Nevell TP, Upton WR (1976) The hydrolysis of cotton cellulose by hydrochloric acid in benzene. Carbohydr Res 49:163–174CrossRefGoogle Scholar
  32. 32.
    Woods RJ, Andrews CW, Bowen JP (1992) Molecular mechanical investigations of the properties of oxocarbenium ions. 2. Application to glycoside hydrolysis. J Am Chem Soc 114(3):859–864CrossRefGoogle Scholar
  33. 33.
    Charmot A, Katz A (2010) Unexpected phosphate salt-catalyzed hydrolysis of glycosidic bonds in model disaccharides: cellobiose and maltose. J Catal 276(1):1–5CrossRefGoogle Scholar
  34. 34.
    Kögel-Knabner I (1997) 13C and 15N NMR spectroscopy as a tool in soil organic matter studies. Geoderma 80(3):243–270CrossRefGoogle Scholar
  35. 35.
    Sing KSW (1985) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl Chem 57(4):603–619CrossRefGoogle Scholar
  36. 36.
    Bui S, Verykios X, Mutharasan R (1985) In situ removal of ethanol from fermentation broths. 1. Selective adsorption characteristics. Ind Eng Chem Process Des Dev 24(4):1209–1213Google Scholar
  37. 37.
    Chung P-W, Charmot A, Gazit OM, Katz A (2012) Glucan adsorption on mesoporous carbon nanoparticles: effect of chain length and internal surface. Langmuir 28(43):15222–15232CrossRefGoogle Scholar
  38. 38.
    Chung P-W, Yabushita M, To AT, Bae YJ, Jankolovits J, Kobayashi H, Fukuoka A, Katz A (2015) Long-chain glucan adsorption and depolymerization in zeolite-templated carbon catalysts. ACS Catal 5:6422–6425CrossRefGoogle Scholar
  39. 39.
    Chung P-W, Charmot A, Click T, Lin Y, Bae YJ, Chu J-W, Katz A (2015) Importance of internal porosity for glucan adsorption in mesoporous carbon materials. Langmuir 31(26):7288–7295CrossRefGoogle Scholar
  40. 40.
    Tormo J, Lamed R, Chirino AJ, Morag E, Bayer EA, Shoham Y, Steitz TA (1996) Crystal structure of a bacterial family-III cellulose-binding domain: a general mechanism for attachment to cellulose. EMBO J 15(21):5739–5751Google Scholar
  41. 41.
    Igarashi K, Uchihashi T, Koivula A, Wada M, Kimura S, Okamoto T, Penttilä M, Ando T, Samejima M (2011) Traffic jams reduce hydrolytic efficiency of cellulase on cellulose surface. Science 333(6047):1279–1282CrossRefGoogle Scholar
  42. 42.
    Zhu W, van de Graaf JM, van den Broeke LJP, Kapteijn F, Moulijn JA (1998) TEOM: a unique technique for measuring adsorption properties. Light alkanes in silicalite-1. Ind Eng Chem Res 37(5):1934–1942CrossRefGoogle Scholar
  43. 43.
    Yong Z, Mata V, Rodrigues AE (2002) Adsorption of carbon dioxide at high temperature—a review. Sep Purif Technol 26(2):195–205CrossRefGoogle Scholar
  44. 44.
    Sharma A, Kyotani T, Tomita A (2000) Comparison of structural parameters of PF carbon from XRD and HRTEM techniques. Carbon 38(14):1977–1984CrossRefGoogle Scholar
  45. 45.
    Tsuzuki S, Honda K, Uchimaru T, Mikami M, Tanabe K (2000) The magnitude of the CH/π interaction between benzene and some model hydrocarbons. J Am Chem Soc 122(15):3746–3753CrossRefGoogle Scholar
  46. 46.
    Brown W (1970) The separation of cellodextrins by gel permeation chromatography. J Chromatogr A 52:273–284CrossRefGoogle Scholar
  47. 47.
    Gurses A, Yalcin M, Sozbilir M, Dogar C (2003) The investigation of adsorption thermodynamics and mechanism of a cationic surfactant, CTAB, onto powdered active carbon. Fuel Process Technol 81(1):57–66CrossRefGoogle Scholar
  48. 48.
    Chen W-Y, Huang H-M, Lin C-C, Lin F-Y, Chan Y-C (2003) Effect of temperature on hydrophobic interaction between proteins and hydrophobic adsorbents: studies by isothermal titration calorimetry and the van’t Hoff equation. Langmuir 19(22):9395–9403CrossRefGoogle Scholar
  49. 49.
    Haselmeier R, Holz M, Marbach W, Weingaertner H (1995) Water dynamics near a dissolved noble gas. First direct experimental evidence for a retardation effect. J Phys Chem 99(8):2243–2246CrossRefGoogle Scholar
  50. 50.
    Southall NT, Dill KA, Haymet ADJ (2002) A view of the hydrophobic effect. J Phys Chem B 106(3):521–533CrossRefGoogle Scholar
  51. 51.
    Dill KA, Truskett TM, Vlachy V, Hribar-Lee B (2005) Modeling water, the hydrophobic effect, and ion solvation. Annu Rev Biophys Biomol Struct 34:173–199CrossRefGoogle Scholar
  52. 52.
    Chen W, Enck S, Price JL, Powers DL, Powers ET, Wong C-H, Dyson HJ, Kelly JW (2013) Structural and energetic basis of carbohydrate-aromatic packing interactions in proteins. J Am Chem Soc 135(26):9877–9884CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Singapore 2016

Authors and Affiliations

  1. 1.Graduate School of Chemical Sciences and EngineeringHokkaido UniversitySapporoJapan

Personalised recommendations