Hydrolysis of Cellulose to Glucose Using Carbon Catalysts

  • Mizuho YabushitaEmail author
Part of the Springer Theses book series (Springer Theses)


High-yielding one-pot production of glucose from cellulose has been achieved using an alkali-activated carbon K26 as a catalyst bearing weak acid sites. The hydrolysis of solid cellulose by solid catalyst is limited due to low physical contact between the substrate and catalyst, but a new ball-milling pretreatment, ball-milling cellulose and carbon together (named mix-milling), has drastically improved the hydrolysis rate. As a result, 90 % yield and 97 % selectivity of water-soluble glucans have been obtained by K26 at 453 K for 20 min. Model reactions and kinetic studies have shown that the mix-milling pretreatment selectively accelerates solid-solid reaction (cellulose to water-soluble oligosaccharides), but does not liquid-solid reaction (soluble oligosaccharides to glucose). Hence, a trace amount of HCl (0.012 wt%) is used to depolymerize oligosaccharides to glucose and as high as 88 % yield of glucose with 90 % selectivity has been achieved. This reaction system is also effective for the hydrolysis of cellulose/hemicellulose in bagasse kraft pulp to hexoses/pentoses.


Carbon catalysts Cellulose Glucose Hydrolysis Mix-milling 


  1. 1.
    Rinaldi R, Schüth F (2009) Design of solid catalysts for the conversion of biomass. Energy Environ Sci 2(6):610–626CrossRefGoogle Scholar
  2. 2.
    Alonso DM, Bond JQ, Dumesic JA (2010) Catalytic conversion of biomass to biofuels. Green Chem 12(9):1493–1513CrossRefGoogle Scholar
  3. 3.
    Gallezot P (2012) Conversion of biomass to selected chemical products. Chem Soc Rev 41(4):1538–1558CrossRefGoogle Scholar
  4. 4.
    Tuck CO, Pérez E, Horváth IT, Sheldon RA, Poliakoff M (2012) Valorization of biomass: deriving more value from waste. Science 337(6095):695–699CrossRefGoogle Scholar
  5. 5.
    Besson M, Gallezot P, Pinel C (2013) Conversion of biomass into chemicals over metal catalysts. Chem Rev 114(3):1827–1870CrossRefGoogle Scholar
  6. 6.
    Yabushita M, Kobayashi H, Fukuoka A (2014) Catalytic transformation of cellulose into platform chemicals. Appl Catal B Environ 145:1–9CrossRefGoogle Scholar
  7. 7.
    Corma A, Iborra S, Velty A (2007) Chemical routes for the transformation of biomass into chemicals. Chem Rev 107(6):2411–2502CrossRefGoogle Scholar
  8. 8.
    Serrano-Ruiz JC, West RM, Dumesic JA (2010) Catalytic conversion of renewable biomass resources to fuels and chemicals. Annu Rev Chem Biomol Eng 1:79–100CrossRefGoogle Scholar
  9. 9.
    Kobayashi H, Fukuoka A (2013) Synthesis and utilisation of sugar compounds derived from lignocellulosic biomass. Green Chem 15(7):1740–1763CrossRefGoogle Scholar
  10. 10.
    Rinaldi R, Schüth F (2009) Acid hydrolysis of cellulose as the entry point into biorefinery schemes. ChemSusChem 2(12):1096–1107CrossRefGoogle Scholar
  11. 11.
    Kobayashi H, Ohta H, Fukuoka A (2012) Conversion of lignocellulose into renewable chemicals by heterogeneous catalysis. Catal Sci Technol 2(5):869–883CrossRefGoogle Scholar
  12. 12.
    Schüth F, Rinaldi R, Meine N, Käldström M, Hilgert J, Rechulski MDK (2014) Mechanocatalytic depolymerization of cellulose and raw biomass and downstream processing of the products. Catal Today 234:24–30CrossRefGoogle Scholar
  13. 13.
    Kobayashi H, Komanoya T, Hara K, Fukuoka A (2010) Water-tolerant Mesoporous-Carbon-Supported ruthenium catalysts for the hydrolysis of cellulose to glucose. ChemSusChem 3(4):440–443CrossRefGoogle Scholar
  14. 14.
    Komanoya T, Kobayashi H, Hara K, Chun W-J, Fukuoka A (2011) Catalysis and characterization of carbon-supported ruthenium for cellulose hydrolysis. Appl Catal A Gen 407(1):188–194CrossRefGoogle Scholar
  15. 15.
    Suganuma S, Nakajima K, Kitano M, Yamaguchi D, Kato H, Hayashi S, Hara M (2008) Hydrolysis of cellulose by amorphous carbon bearing SO3H, COOH, and OH groups. J Am Chem Soc 130(38):12787–12793CrossRefGoogle Scholar
  16. 16.
    Onda A, Ochi T, Yanagisawa K (2008) Selective hydrolysis of cellulose into glucose over solid acid catalysts. Green Chem 10(10):1033–1037CrossRefGoogle Scholar
  17. 17.
    Mo X, López DE, Suwannakarn K, Liu Y, Lotero E, Goodwin JG Jr, Lu C (2008) Activation and deactivation characteristics of sulfonated carbon catalysts. J Catal 254(2):332–338CrossRefGoogle Scholar
  18. 18.
    Chung P-W, Charmot A, Olatunji-Ojo OA, Durkin KA, Katz A (2013) Hydrolysis catalysis of Miscanthus xylan to xylose using weak-acid surface sites. ACS Catal 4(1):302–310CrossRefGoogle Scholar
  19. 19.
    Charmot A, Chung P-W, Katz A (2014) Catalytic hydrolysis of cellulose to glucose using weak-acid surface sites on postsynthetically modified carbon. ACS Sustainable Chem Eng 2(12):2866–2872CrossRefGoogle Scholar
  20. 20.
    Jun S, Joo SH, Ryoo R, Kruk M, Jaroniec M, Liu Z, Ohsuna T, Terasaki O (2000) Synthesis of new, nanoporous carbon with hexagonally ordered mesostructure. J Am Chem Soc 122(43):10712–10713CrossRefGoogle Scholar
  21. 21.
    Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker D. Determine of structural carbohydrates and lignin in biomass: Laboratory Analytical Procedures (LAP). (Online) Accessed 31 Oct 2015
  22. 22.
    Boehm H (1994) Some aspects of the surface chemistry of carbon blacks and other carbons. Carbon 32(5):759–769CrossRefGoogle Scholar
  23. 23.
    McCormick CL, Callais PA, Hutchinson BH Jr (1985) Solution studies of cellulose in lithium chloride and N,N-dimethylacetamide. Macromolecules 18(12):2394–2401CrossRefGoogle Scholar
  24. 24.
    Strlič M, Kolenc J, Kolar J, Pihlar B (2002) Enthalpic interactions in size exclusion chromatography of pullulan and cellulose in LiCl-N, N-dimethylacetamide. J Chromatogr A 964(1):47–54CrossRefGoogle Scholar
  25. 25.
    Mäurer T, Müller SP, Kraushaar-Czarnetzki B (2001) Aggregation and peptization behavior of zeolite crystals in sols and suspensions. Ind Eng Chem Res 40(12):2573–2579CrossRefGoogle Scholar
  26. 26.
    Gopalakrishnan S, Yada S, Muench J, Selvam T, Schwieger W, Sommer M, Peukert W (2007) Wet milling of H-ZSM-5 zeolite and its effects on direct oxidation of benzene to phenol. Appl Catal A Gen 327(2):132–138CrossRefGoogle Scholar
  27. 27.
    Mitra B, Kunzru D (2008) Washcoating of different zeolites on cordierite monoliths. J Am Ceram Soc 91(1):64–70CrossRefGoogle Scholar
  28. 28.
    Bobleter O (1994) Hydrothermal degradation of polymers derived from plants. Prog Polym Sci 19(5):797–841CrossRefGoogle Scholar
  29. 29.
    Strachan J (1938) Solubility of cellulose in water. Nature 141:332–333CrossRefGoogle Scholar
  30. 30.
    Fang Z, Koziński JA (2000) Phase behavior and combustion of hydrocarbon-contaminated sludge in supercritical water at pressures up to 822 MPa and temperatures up to 535 ºC. Proc Combust Inst 28(2):2717–2725CrossRefGoogle Scholar
  31. 31.
    Shrotri A, Lambert LK, Tanksale A, Beltramini J (2013) Mechanical depolymerisation of acidulated cellulose: understanding the solubility of high molecular weight oligomers. Green Chem 15(10):2761–2768CrossRefGoogle Scholar
  32. 32.
    Hick SM, Griebel C, Restrepo DT, Truitt JH, Buker EJ, Bylda C, Blair RG (2010) Mechanocatalysis for biomass-derived chemicals and fuels. Green Chem 12(3):468–474CrossRefGoogle Scholar
  33. 33.
    Meine N, Rinaldi R, Schüth F (2012) Solvent-free catalytic depolymerization of cellulose to water-soluble oligosaccharides. ChemSusChem 5(8):1449–1454CrossRefGoogle Scholar
  34. 34.
    Geboers J, Van de Vyver S, Carpentier K, Jacobs P, Sels B (2011) Efficient hydrolytic hydrogenation of cellulose in the presence of Ru-loaded zeolites and trace amounts of mineral acid. Chem Commun 47(19):5590–5592CrossRefGoogle Scholar
  35. 35.
    International Chemical Information Service (ICIS). Hydrochloric acid prices, markets & analysis. (Online) Accessed 31 Oct 2015
  36. 36.
  37. 37.
    Maréchal Y, Chanzy H (2000) The hydrogen bond network in Iβ cellulose as observed by infrared spectrometry. J Mol Struct 523(1):183–196CrossRefGoogle Scholar
  38. 38.
    Abatzoglov N, Bouchard J, Chornet E, Overend RP (1986) Dilute acid depolymerization of cellulose in aqueous phase: Experimental evidence of the significant presence of soluble oligomeric intermediates. Canad J Chem Eng 64(5):781–786CrossRefGoogle Scholar
  39. 39.
    Saeman JF (1945) Kinetics of wood saccharification—hydrolysis of cellulose and decomposition of sugars in dilute acid at high temperature. Ind Eng Chem 37(1):43–52CrossRefGoogle Scholar
  40. 40.
    Sasaki M, Kabyemela B, Malaluan R, Hirose S, Takeda N, Adschiri T, Arai K (1998) Cellulose hydrolysis in subcritical and supercritical water. J Supercrit Fluids 13(1):261–268CrossRefGoogle Scholar
  41. 41.
    Kobayashi H, Ito Y, Komanoya T, Hosaka Y, Dhepe PL, Kasai K, Hara K, Fukuoka A (2011) Synthesis of sugar alcohols by hydrolytic hydrogenation of cellulose over supported metal catalysts. Green Chem 13(2):326–333CrossRefGoogle Scholar
  42. 42.
    Faith WL (1945) Development of the Scholler process in the United States. Ind Eng Chem 37(1):9–11CrossRefGoogle Scholar
  43. 43.
    Kobayashi H, Kaiki H, Shrotri A, Techikawara K, Fukuoka A (2016) Hydrolysis of woody biomass by biomass-derived reusable heterogeneous catalyst. Chem Sci 7(1):692–696Google Scholar
  44. 44.
    Komanoya T, Kobayashi H, Hara K, Chun W-J, Fukuoka A (2014) Kinetic study of catalytic conversion of cellulose to sugar alcohols under low-pressure hydrogen. ChemCatChem 6(1):230–236CrossRefGoogle Scholar
  45. 45.
    Liao Y, Liu Q, Wang T, Long J, Zhang Q, Ma L, Liu Y, Li Y (2014) Promoting hydrolytic hydrogenation of cellulose to sugar alcohols by mixed ball milling of cellulose and solid acid catalyst. Energy Fuels 28(9):5778–5784CrossRefGoogle Scholar
  46. 46.
    Stanmore BR, Brilhac JF, Gilot P (2001) The oxidation of soot: a review of experiments, mechanisms and models. Carbon 39(15):2247–2268CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Singapore 2016

Authors and Affiliations

  1. 1.Graduate School of Chemical Sciences and EngineeringHokkaido UniversitySapporoJapan

Personalised recommendations