Robotics: Hephaestus Does It Again

Chapter
Part of the Cognitive Science and Technology book series (CSAT)

Abstract

After browsing through half a century of robotics research, the chapter emphasizes on motion autonomy as the key attribute of robots. The presentation follows a guiding thread inspired by an ancient myth accounting for the universally debated relationship between science and technology. In Greek mythology, Hephaestus was a talented craftsman. Enamoured with Athena, he attempted to seduce her, in vain. The goddess of “knowing” withstood the advances of the god of “doing”. Robotics stems from this tension. Although the myth contradicts a current tendency to confuse science and technology, it nevertheless reflects the experience of the author as a roboticist.

References

  1. 1.
    Stokes DE (1997) Pasteur’s quadrant—basic science and technological innovation. Brookings Institution PressGoogle Scholar
  2. 2.
    Hard R (1997) The library of greek mythology/apollodorus. Oxford University Press, Oxford, p 132Google Scholar
  3. 3.
    Brooks RA (1991) Intelligence without representation. Artif Intell 47:139–159. doi:10.1016/0004-3702(91)90053-M CrossRefGoogle Scholar
  4. 4.
    Ijspeert AJ, Crespi A, Ryczko R, Cabelguen JM (2007) From swimming to walking with a salamander robot driven by a spinal cord model. Science 315(5817):1416–1420. doi:10.1126/science.1138353 CrossRefGoogle Scholar
  5. 5.
    Ruffier F, Franceschini N (2005) Optic flow regulation: the key to aircraft automatic guidance. Robot Auton Syst 50(4):177–194. doi:10.1016/j.robot.2004.09.016 CrossRefGoogle Scholar
  6. 6.
    Khatib O, Siciliano B (eds) (2008) Springer Handbook of Robotics. SpringerGoogle Scholar
  7. 7.
    Lozano-Pérez T (1983) Spatial planning: a configuration space approach. IEEE Trans Comput C-32(2):108–120. doi: 10.1109/TC.1983.1676196
  8. 8.
    Schwartz JT, Sharir M, On the ‘piano movers’ problem II: general techniques for computing topological properties of real algebraic manifolds. Adv Appl Math 4(1):298–351. doi: 10.1016/0196-8858(83)90014-3
  9. 9.
    Barraquand J, Latombe JC (1991) Robot motion planning: a distributed representation approach. Int J Robot Res 10(6):628–649. doi:10.1177/027836499101000604 CrossRefGoogle Scholar
  10. 10.
    Khatib O (1986) Real-time obstacle avoidance for manipulators and mobile robots. Int J Robot Res 5(1):90–98. doi:10.1177/027836498600500106 MathSciNetCrossRefGoogle Scholar
  11. 11.
    Kavraki LE, Svestka P, Latombe JC, Overmars MH (1996) Probabilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE Trans Robot Autom 12(4):566–580. doi:10.1109/70.508439 CrossRefGoogle Scholar
  12. 12.
    Siméon T, Laumond JP, Lamiraux F (2001) Move3D: a generic platform for path planning. In: Proceedings of 4th international symposium on assembly and task planningGoogle Scholar
  13. 13.
    Laumond JP (2006) A success story of motion planning algorithms. IEEE Robot Autom Mag 13(2)Google Scholar
  14. 14.
    Li Z, Canny JF (eds) (1993) Nonholonomic motion planning. Kluwer Academic PublishersGoogle Scholar
  15. 15.
    Risler JJ, Luca F (1994) The maximum of the degree of nonholonomy for the car with n trailers. In: Proceedings of the IFAC symposium on robot control. doi:10.1.1.48.2332Google Scholar
  16. 16.
    Brooks R (2008) I, rodney brooks, am a robot. IEEE Spectr 45(6):62–67CrossRefGoogle Scholar
  17. 17.
    Poincaré H (1895) L’espace et la géométrie. Revue de métaphysique et de morale 3:631–646MATHGoogle Scholar
  18. 18.
    Kanoun O, Laumond JP, Yoshida E (2011) Planning foot placements for a humanoid robot: a problem of inverse kinematics. Int J Robot Res 30(4):476–485. doi:10.1177/0278364910371238 Google Scholar
  19. 19.
    Nakamura Y (1991) Advanced robotics: redundancy and optimization. Addison-Wesley Longman Publishing Co, BostonGoogle Scholar
  20. 20.
    Bernstein N (1967) The coordination and regulation of movements. Pergamon Press, OxfordGoogle Scholar
  21. 21.
    Berthoz A (2012) Simplexity. Yale University PressGoogle Scholar
  22. 22.
    Kajita S et al (2003) Biped walking pattern generation by using preview control of zero-moment point. In: Proceedings of IEEE international conference on robotics and automation, vol 2, pp 1620–1626. doi: 10.1109/ROBOT.2003.1241826
  23. 23.
    Vukobratović M, Stepanenko J (1972) On the stability of anthropomorphic systems. Math Biosci 15:1–37. doi:10.1016/0025-5564(72)90061-2 CrossRefMATHGoogle Scholar
  24. 24.
    Berthoz A (2000) The Brain’s Sense of Movement. Harvard University PressGoogle Scholar

Copyright information

© Springer Science+Business Media Singapore 2016

Authors and Affiliations

  1. 1.LAAS-CNRSToulouse Cedex 4France

Personalised recommendations