Skip to main content

Occlusion Detection Using Multi-Mode Mean-Shift Tracking

  • 855 Accesses

Part of the Lecture Notes in Electrical Engineering book series (LNEE,volume 373)

Abstract

In this paper, we propose an advanced mean-shift tracking based on multi-mode kernel considering the background weight in which the kernel is divided into multiple sub-kernels in order to detect the partial or full occlusion. The proposed method includes occlusion detection based on coefficient of variance of Bhattacharya coefficients for multi-mode kernels. Experimental results show that the proposed method is able to robustly track a target object with partial and long term full occlusion in moving camera environment.

Keywords

  • Visual object tracking
  • Kernel-based tracking
  • Multi-model kernel tracking
  • Occlusion handling

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Collins, R.T., Lipton, A.J., Fujiyoshi, H., Kanade, T.: Algorithms for cooperative multisensor surveillance. Proceedings of the IEEE 89(10), 1456–1477 (2001)

    CrossRef  Google Scholar 

  2. Meer, P.: Kernel-based object tracking. IEEE Transactions on pattern analysis and machine intelligence 25(5) (2003)

    Google Scholar 

  3. Elgammal, A., Harwood, D., Davis, L.: Non-parametric model for background subtraction. In: Computer Vision—ECCV 2000, pp. 751–767 (2000)

    Google Scholar 

  4. Haritaoglu, I., Harwood, D., Davis, L.S.: W4: real-time surveillance of people and their activities. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(8), 809–830 (2000)

    CrossRef  Google Scholar 

  5. Jeyakar, J., Babu, R.V., Ramakrishnan, K.R.: Robust object tracking with background-weighted local kernels. Computer Vision and Image Understanding 112(3), 296–309 (2008)

    CrossRef  Google Scholar 

  6. Khan, Z.H., Gu, I.Y., Backhouse, A.G.: Robust visual object tracking using multi-mode anisotropic mean shift and particle filters. IEEE Transactions on Circuits and Systems for Video Technology 21(1), 74–87 (2011)

    CrossRef  Google Scholar 

  7. Ning, J., Zhang, L., Zhang, D., Wu, C.: Robust mean-shift tracking with corrected background-weighted histogram. IET Computer Vision 6(1), 62–69 (2012)

    CrossRef  MathSciNet  Google Scholar 

  8. Stauffer, C., Grimson, W.E.L.: Learning patterns of activity using real-time tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(8), 747–757 (2000)

    CrossRef  Google Scholar 

  9. Toyama, K., Krumm, J., Brumitt, B., Meyers, B.: Wallflower: principles and practice of background maintenance. In: The Proceedings of the Seventh IEEE International Conference on In Computer Vision, 1999, vol. 1, pp. 255–261 (1999)

    Google Scholar 

  10. Wren, C.R., Azarbayejani, A., Darrell, T., Pentland, A.P.: Pfinder: Real-time tracking of the human body. IEEE Transactions on Pattern Analysis and Machine Intelligence 19(7), 780–785 (1997)

    CrossRef  Google Scholar 

  11. Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. ACM Computing Surveys (CSUR) 38(4), 13 (2006)

    CrossRef  Google Scholar 

  12. Comaniciu, D., Meer, P.: Mean shift: A robust approach toward feature space analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(5), 603–619 (2002)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoo-Joo Choi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2015 Springer Science+Business Media Singapore

About this paper

Cite this paper

Kim, ES., Hong, M., Choi, YJ. (2015). Occlusion Detection Using Multi-Mode Mean-Shift Tracking. In: Park, DS., Chao, HC., Jeong, YS., Park, J. (eds) Advances in Computer Science and Ubiquitous Computing. Lecture Notes in Electrical Engineering, vol 373. Springer, Singapore. https://doi.org/10.1007/978-981-10-0281-6_85

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-0281-6_85

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-0280-9

  • Online ISBN: 978-981-10-0281-6

  • eBook Packages: Computer ScienceComputer Science (R0)