Skip to main content

Green Flame Retardants for Textiles

Part of the Environmental Footprints and Eco-design of Products and Processes book series (EFEPP)

Abstract

Application of flame retardants plays a crucial protective function to reduce overall fire risk by suppressing the spread of fires or by delaying the time of flashover, thus enabling people or resources to have sufficient time to escape or rescue from the fire hazards, respectively. Among them, only few have gained commercial importance, are halogenated and phosphorus-based flame retardants those proved to be persistent are carcinogenic, bioaccumulative, and toxic for animals and humans. There has been an ever-growing demand for new flame retardant product options recognizing not only to ensure a favourable ecological profile but also to have a durable and cost-effective product. The sustainability concerns of various hazardous textile chemicals have been intensively researched. This chapter discusses fire science concepts, histrotical development in fire retardants their types, applications and some potential alternative products that have recently been reported—such as natural extracts of casein, spinach, and banana—along with currently reported technology such as DNA, nano materials, plasma, etc.

Keywords

  • Flame retardants
  • Eco-friendly
  • LOI
  • Plasma
  • Nanotechnology
  • DNA
  • Casein

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31

Notes

  1. 1.

    http://www.ceficefra.com/Objects/2/FilesMaking%20textiles%20safer%20against%20fire.pdf. Accessed on 23 August 2015.

  2. 2.

    INCHEM, http:// www.inchem.org/documents/ehc. Accessed 23rd August 2015.

References

  • Abidi N, Hequet E, Tarimala S, Dai LL (2007) Cotton fabric surface modification for improved UV radiation protection using sol-gel process. J Appl Polym Sci 104(1):111–117

    CAS  CrossRef  Google Scholar 

  • Adams C (2004) What exactly is fire? The straight dope. Chicago Reader Inc, Chicago, IL http://www.straightdope.com/columns/021122.html. Acessed on 14 Sept 2015

  • Adivarekar RV, Dasarwar S (2010) Flame retardant systems for textiles. J Text Assoc 71(11–12):175–182

    Google Scholar 

  • Ajgaonkar DB (1994) Flame/fire retardant/thermostable clothing. Man-made Text India 9:465–469

    Google Scholar 

  • Akovali G, Gundogan G (1990) Studies on flame retardancy of polyacrylonitrile fiber treated by flame-retardant monomers in cold plasma. J Appl Polym Sci 41(9–10):2011–2019

    CAS  CrossRef  Google Scholar 

  • Akovali G, Takrouri F (1991) Studies on modification of some flammability characteristics by plasma. II. Polyester fabric. J Appl Polym Sci 42(10):2717–2225

    Google Scholar 

  • Alakkad S (2015) Synthesis of phosphorus-based hemiacetals for potential flame retardants. Honors Theses, University of Dayton, Dept. of chemistry

    Google Scholar 

  • Alongi J, Tata J, Frache A (2011) Hydrotalcite and nanometric silica as finishing additives to enhance the thermal stability and flame retardancy of cotton. Cellulose 18(1):179–190

    CAS  CrossRef  Google Scholar 

  • Alongi J, Carosio F, Frache A, Malucelli G (2013a) Layer by Layer coatings assembled through dipping, vertical or horizontal spray for cotton flame retardancy. Carbohydr Polym 92:114–119

    CAS  CrossRef  Google Scholar 

  • Alongi J, Carletto RA, Di Blasio A, Carosio F, Bosco F, Malucelli G (2013b) DNA: a novel, green, natural flame retardant and suppressant for cotton. J Mater Chem A 1(15):4779–4785

    CAS  CrossRef  Google Scholar 

  • Alongi J, Carletto RA, Di Blasio A, Carosio F, Bosco F, Malucelli G (2013c) Intrinsic intumescent-like flame retardant properties of DNA-treated cotton fabrics. Carbohydr Polym 96(1):296–304

    CAS  CrossRef  Google Scholar 

  • Alongi J, Carosio F, Malucelli G (2014a) Current emerging techniques to impart flame retardancy to fabrics: an overview. Polym Degrad Stab 106:138–149

    CAS  CrossRef  Google Scholar 

  • Alongi J, Carletto RA et al (2014b) Caseins and hydrophobins as novel green flame retardants for cotton fabrics. Polym Degrad Stab 99(1):111–117

    CAS  CrossRef  Google Scholar 

  • Amaduzzi F, Boboi F et al (2014) Chitosan-DNA complexes: charge inversion and DNA condensation. Colloids Surf B Nanostructured delivery systems in food: Latest developments and potential 114, 1

    Google Scholar 

  • Andreaus J et al (2010) Application of cyclodextrins in textile processes. Quim Nova 33:929–937

    CAS  CrossRef  Google Scholar 

  • Apaydin K, Laachachi A, Ball V et al (2013) Polyallylamin-montmorillonite as super flame retardant coating assemblies by layer-by layer deposition on polyamide. Polym Degrad Stab 98(2):627–634

    CAS  CrossRef  Google Scholar 

  • Astray G, Gonzalez-Barreiro C, Mejuto JC, Rial-Otero R, Simal-Gándara J (2009) A review on the use of cyclodextrins in foods. Food Hydrocolloids 23(7):1631–1640

    CAS  CrossRef  Google Scholar 

  • Avento JM, Touval I (1980) Antimony and other inorganic compounds. In: Kirk-Othmer encyclopedia of chemical technology, 3rd edn, vol 10. Wiley, New York, pp 486–487

    Google Scholar 

  • Bajaj P, Sengupta AK (1992) Protective clothing. Textile Prog 22(2/3/4):1–110

    Google Scholar 

  • Bajaj P, Kothari VK, Ghosh SB (2000) Some innovations in UV protective clothing. Indian J Fibres Text Res 35(4):315–329

    Google Scholar 

  • Basak S, Samanta KK, Chattopadhyay SK (2014) Fire retardant property of cotton fabric treated with herbal extract. J Text Inst 1–10. doi:10.1080/00405000.2014.995456

    Google Scholar 

  • Basak S et al (2015) Flame resistant cellulosic substrate using banana pseudostem sap. Polish J Chem Technol 17(1):123–133

    CAS  CrossRef  Google Scholar 

  • Basch A, Lewin M (1973) Low add-on levels of chemicals on cotton and flame retardancy. Text Res J 43(11):693–694

    CAS  CrossRef  Google Scholar 

  • Beninate JV, Trask BJ, Drake GL (1981) Durable flame retardant treatments for blends of cotton, wool, and polyester. Text Res J 51(4):217–224

    CAS  CrossRef  Google Scholar 

  • Bernt P, Kurihara K, Kunitake T (1992) Adsorption of poly(styrenesulfonate) onto an ammonium monolayer on mica: a surface forces study. Langmuir 8(10):2486–2490

    CrossRef  Google Scholar 

  • Beyer G (2005) Nanocomposites offer new way forward for flame retardants. Plast Addit Compd 7(5):32–35

    CAS  CrossRef  Google Scholar 

  • Blanchard EJ, Graves EE (2002) Polycarboxylic acids for flame resistant polyester/cotton carpeting. Text Res J 72(1):39–43

    CAS  Google Scholar 

  • Bosco F, Carletto RA, Alongi J, Marmo L, Di Blasio A, Malucelli G (2013) Thermal stability and flame resistance of cotton fabrics treated with whey proteins. Carbohydr Polym 94(1):372–377

    CAS  CrossRef  Google Scholar 

  • Bourbigot S, Duquesne S (2007a) Fire retardant polymers: recent developments and opportunities. J Mater Chem 17:2283–2300

    CAS  CrossRef  Google Scholar 

  • Bourbigot S, Duquesne S (2007b) Fire retardant polymers: recent developments and opportunities. J Mater Chem 17(22):2283–2300

    CAS  CrossRef  Google Scholar 

  • Bourbigot S, Duquensne S, Leroy JM (1999a) Modeling of heat transfer of a polypropylene-based intumescent system during combustion. J Fire Sci 17:42–50

    CAS  CrossRef  Google Scholar 

  • Bourbigot S, Jama C, Le Bras M, Delobel R, Dessaux O, Gourmand P (1999b) New approach to flame retardancy using plasma assisted surface polymerisation techniques. Polym Degrad Stab 66(1):153–155

    CAS  CrossRef  Google Scholar 

  • Cain A, Murray S, Holder K, Nolen C, Grunlan JC (2014) Intumescent nanocoating extinguishes flame on fabric using aqueous polyelectrolyte complex deposited in single step. Macromol Mater Eng 299:1180–1187

    CAS  CrossRef  Google Scholar 

  • Calamari TA, Harper RJ (1993) Flame retardants for textiles. In: Kirk-Othmer encyclopedia of chemical technology, 4th edn, vol 10. Wiley, New York, pp 998–1022

    Google Scholar 

  • Caldara M, Colleoni C, Guido E, Re V, Rosace G (2012) Development of a textileoptoelectronic pH meter based on hybrid xerogel doped with methyl red. Sens Actuators B 171–172:1013–1021

    CrossRef  CAS  Google Scholar 

  • Carosio F, Alongi J et al (2012) In: Morgan AB, Nelson GL, Wilkie CA (eds) Fire and polymers VI: new advances in flame retardant chemistry and science (Chap. 22). ACS Symposium Series 1118, Washington DC

    Google Scholar 

  • Carosio F, Alongi J, Frache A (2011) Influence of surface activation by plasma and nanoparticle adsorption on the morphology, thermal stability and combustion behavior of PET fabrics. Eur Polym J 47(5):893–902

    CAS  CrossRef  Google Scholar 

  • Carosio F, Alongi J, Malucelli G (2012) Layer by layer ammonium polyphosphate-based coatings for flame retardancy of polyester–cotton blends. Carbohydr Polym 88:1460–1469

    CAS  CrossRef  Google Scholar 

  • Carosio F, Di Blasio A, Alongi J, Malucelli G (2013) Layer by layer nanoarchitectures for the surface protection of polycarbonate. Eur Polym J 49(2):397–404

    CAS  CrossRef  Google Scholar 

  • Chang S, Slopek R, Condon B, Grunlan JC (2014) Surface coating for flame-retardant behavior of cotton fabric using a continuous layer-by-layer process. Ind Eng Chem Res 53:3805–3812

    CAS  CrossRef  Google Scholar 

  • Charles QY, Wu WD (2003) Combination of a hydroxyfunctional organophosphorus oligomer and a multifunctional carboxylic acid as a flame retardant finishing system for cotton: part I. Fire Mater 27:223–237

    CrossRef  CAS  Google Scholar 

  • Chen DQ, Wang YZ (2005) Flame-retardant and antidripping effects of a novel char-forming flame retardant for the treatment of poly(ethylene terephthalate) fabrics. Polym Degrad Stab 88:349–356

    CAS  CrossRef  Google Scholar 

  • Chen DQ, Wang YZ, Hu XP et al (2005) Flame-retardant and anti-dripping effects of a novel char-forming flame retardant for the treatment of poly(ethylene terephthalate) fabrics. Polym Degrad Stab 88:349–355

    CAS  CrossRef  Google Scholar 

  • Cireli A, Onar N (2008) Leaching and fastness behavior of cotton fabrics dyed with different type of dyes using sol-gel process. J Appl Polym Sci 109(1):97–105

    CrossRef  CAS  Google Scholar 

  • Colleoni C, Massafra MR, Rosace G (2012) Photocatalytic properties and optical characterization of cotton fabric coated via sol-gel with non-crystalline TiO2 modified with poly(ethylene glycol). Surf Coat Technol 207:79–88

    CAS  CrossRef  Google Scholar 

  • Cullis CF (1987) Bromine compounds as flame retardants. In: Proceedings of the international conference on fire safety, vol 12, pp 307–323

    Google Scholar 

  • Darnerud PO (2003) Toxic effects of brominated flame retardants in man and in wildlife. Environ Int 29(6):841–853

    CAS  CrossRef  Google Scholar 

  • Decher G, Schlenoff J (ed) (2002) Multilayer thin films, sequential assembly of nanocomposite materials. Wiley VCH, Weinheim

    Google Scholar 

  • Farag ZR, Krüger S, Hidde G, Schimanski A, Jäger C, Friedrich J (2013) Deposition of thick polymer or inorganic layers with flame-retardant properties by combination of plasma and spray processes. Surf Coat Technol 228:266–274

    CAS  CrossRef  Google Scholar 

  • Fox PF, Mulvihill DM (1983) Functional properties of caseins, caseinates and casein coprecipitates. In: Proceedings of international dairy federation. Symposium: physico-chemical aspects of dehydrated protein-rich milk products, Denmark

    Google Scholar 

  • Grabner RS (1993) N-containing flame retardants: an alternative handout at OECD workshop on brominated flame retardants, Neuchâtel, Switzerland, 22–25 Feb 1993

    Google Scholar 

  • Green JC (1992) A review of phosphorus-containing flame retardants. J Fire Sci 10:470–487

    CAS  CrossRef  Google Scholar 

  • Grifoni D, Bacci L, Zipoli G, Albanese L, Sabatini F (2011) The role of natural dyes in the UV protection of fabrics made of vegetable fibres. Dyes Pigm 91:279–285

    CAS  CrossRef  Google Scholar 

  • Grützmacher JL, Tsafack MJ, Kamlangkla K et al (2012) Multifunctional coatings on fabrics by application of a low-pressure plasma process. In 13th international conference on plasma surface engineering, Garmisch-Partenkirchen, Germany, 10–14 Sept 2012

    Google Scholar 

  • Guin T, Krecker M, Milhorn A, Grunlan JC (2014) Maintaining hand and improving fire resistance of cotton fabric through ultrasonication rinsing of multilayer nanocoating. Cellulose 21:3023–3030

    CAS  CrossRef  Google Scholar 

  • Hartin E (2015) Fire development and fire behavior indicators. http://cfbt-us.com/pdfs/FBIandFireDevelopment.pdf. Acessed on 14 Sept 2015

  • Hartmann PC, Burgi D, Giger W (2004) Organophosphate flame retardants and plasticizers in indoor air. Chemosphere 57:781–787

    CAS  CrossRef  Google Scholar 

  • Healey G, Slater D, Lin T, Drda B, Goedeke AD (1994) A system for real-time fire detection. In: Proceedings of cognitive computer vision and pattern recognition, pp 605–606

    Google Scholar 

  • Hendrix JE, Bostic Jr et al (1970) Pyrolysis and combustion of cellulose. I. Effects of triphenyl phosphate in the presence of nitrogenous bases. J Appl Polym Sci 14(7):1701–1723

    Google Scholar 

  • Hindersinn RR (1990) Historical aspects of polymer fire retardance. In: Nelson GL (ed) Fire and polymers hazards identification and prevention, ACS Symposium Series No. 415. New York, American Chemical Society

    Google Scholar 

  • Hirschler M (2001) Fire performance of organic polymers, thermal decomposition, and chemical composition. In: Nelson GL, Wilkie CA (eds) Fire and polymers materials and solutions for hazard prevention. ACS symposium series, vol 797. American Chemical Society, Washington, DC, pp 293–306

    Google Scholar 

  • Hoang DQ, Kim J, Jang BN (2008) Synthesis and performance of cyclic phosphorus-containing flame retardants. Polym Degrad Stab 93:2042–2051

    CAS  CrossRef  Google Scholar 

  • Horrocks AR (1996) Developments in flame retardants for heat and fire resistant textile—the role of char formation and intumescence. Polym Degrad Stab 54:143–154

    CAS  CrossRef  Google Scholar 

  • Horrocks AR (2001) Textiles. In: Horrocks AR, Price DZ (eds) Fire retardant materials. Woodhead Publishing Ltd., CRC Press LLC, Cambridge, England, pp 128–181

    Google Scholar 

  • Horrocks AR (2011) Flame retardant challenges for textiles and fibres: new chemistry versus innovatory solutions. Polym Degrad Stab 96:377–392

    CAS  CrossRef  Google Scholar 

  • Horrocks AR, Tunc M, Price D (1989) The burning behaviour of textiles and its assessment by oxygen index methods. Textile Prog 18(1/2/3):1–186

    Google Scholar 

  • Horrocks AR, Nazaré S, Masood R, Kandola B, Price D (2011) Surface modification of fabrics for improved flash-fire resistance using atmospheric pressure plasma in the presence of a functionalized clay and polysiloxane. Polym Adv Technol 22(1):9–22

    CrossRef  CAS  Google Scholar 

  • Huang L, Gerber M, Lu J, Tonelli AE (2001) Formation of a flame retardant-cyclodextrin inclusion compound and its application as a flame retardant for poly (ethylene terephthalate). Polym Degard Stab 71:279–284

    CAS  CrossRef  Google Scholar 

  • Huang KS, Nien YH, Hsiao KC, Chang YS (2006) Application of DMEU/SiO2 gel solution in the antiwrinkle finishing of cotton fabrics. J Appl Polym Sci 102(5):4136–4143

    CAS  CrossRef  Google Scholar 

  • Huang G, Liang L, Wang X, Gao J (2012a) Poly(acrylic acid)/clay thin films assembled by layer-by-layer deposition for improving the flame retardancy properties of cotton. Ind Eng Chem Res 51:12299–12309

    CAS  Google Scholar 

  • Huang G, Yang J, Gao J, Wang X (2012b) Thin films of intumescent flame retardant-polyacrylamide and exfoliated graphene oxide fabricated via layer-by-layer assembly for improving flame retardant properties of cotton fabric. Ind Eng Chem Res 51:12355–12366

    CAS  CrossRef  Google Scholar 

  • IARC (1990) Some flame retardants and textile chemicals and exposures in the textile manufacturing industry. IARC monographs on the evaluation of carcinogenic risks to humans, vol 48, Lyon

    Google Scholar 

  • IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, Volume 48 (1990) Some flame retardants and textile chemicals and exposures in the textile manufacturing industry, Lyon

    Google Scholar 

  • Iler RK (1966) Multilayers of colloidal particles. J Colloid Interface Sci 21(6):569–594

    CAS  CrossRef  Google Scholar 

  • International Agency for Research on Cancer (1990) Some flame retardants and textile chemicals, and exposures in the textile manufacturing industry, vol 48

    Google Scholar 

  • IPCS (1994) Environmental health criteria 162: brominated diphenyl ethers. International programme on chemical safety. World Health Organization, Geneva, p 347

    Google Scholar 

  • IPCS (1995) Environmental health criteria 172: Tetrabromobisphenol-A and derivatives. International programme on chemical safety. World Health Organization, Geneva, p 139

    Google Scholar 

  • Islam S, Mohammad S, Mohammad M (2013) Perspectives for natural product based agents derived from industrial plants in textile applications: a review. J Clean Prod 57:2–18

    CrossRef  Google Scholar 

  • Israeli-Lev GYD (2014) Livney Nanostructured delivery systems in food: Latest developments and potential. Food Hydrocolloids 35:28–35

    CAS  CrossRef  Google Scholar 

  • Jackson D (1998) An overview of thermal protection. In: Protective clothing conference, Clemson University, SC, 9–11 June 1998

    Google Scholar 

  • Jeang CL, Lin DG, Hsieh SH (2005) Characterization of cyclodextrin glycosyltransferase of the same gene expressed from Bacillus macerans, Bacillus subtilis, and Escherichia coli. J Agric Food Chem 53(16):6301–6304

    CAS  CrossRef  Google Scholar 

  • Jeffries R (1988) Clothing for work and protection. Text Asia 19(11):72–82

    Google Scholar 

  • Jena B, Das BP, Khandual A, Sahu S, Behera L (2015) Ecofriendly processing of textiles. Mater Today Proc 2:1776–1791

    CrossRef  Google Scholar 

  • Jiang Q, Wang Q (2010) Large space fire image processing for improving canny edge detector based on adaptive smoothing. In: International Proceedings on CICCITOE, pp 264–267

    Google Scholar 

  • Jimenez M, Bellayer S, Duquesne S, Bourbigot S (2010) Improvement of heat resistance of high performance fibers using a cold plasma polymerization process. Surf Coat Technol 205(3):745–758

    CAS  CrossRef  Google Scholar 

  • Joshi M, Ali SW, Purwar R, Rajendran S (2009) Ecofriendly antimicrobial finishing of textiles using bioactive agents based on natural products. Indian J Fibre Text Res 34:295–304

    CAS  Google Scholar 

  • Kamlangkla K, Hodak SK, Levaois-Grützmacher J (2011) Multifunctional silk fabrics by means of the plasma induced graft polymerization (PIGP) process. Surf Coat Technol 205(13–14):3755–3762

    CAS  CrossRef  Google Scholar 

  • Kan CW, Lam YL, Yuen CW (2012) Fabric handle of plasma-treated cotton fabrics with flame-retardant finishing catalyzed by titanium dioxide. Green Process Synth 1(2):195–204

    CAS  Google Scholar 

  • Kaur I, Sharma RM (2007) Development of flame retardant cotton fabric through grafting and post grafting reaction. Indian J Fibre Text Res 32:312–318

    CAS  Google Scholar 

  • Ke CH, Li J, Fang KY et al (2010) Synergistic effect between a novel hyper branched charring agent and ammonium polyphosphate on the flame retardant and anti-dripping properties of polylactide. Polym Degrad Stab 95:763–775

    CAS  CrossRef  Google Scholar 

  • Khandual A, Luximon A, Sachdeva A, Rout N, Sahoo PK (2015) Enhancement of functional properties of cotton by conventional dyeing with Tio2 nanoparticles. Mater Today Proc 2(4):3674–3683

    CrossRef  Google Scholar 

  • Kim YS, Davis R, Cain AA, Grunlan JC (2011) Development of layer-by-layer assembled carbon nanofiber-filled coatings to reduce polyurethane foam flammability. Polymer 52(13):2847–2855

    CAS  CrossRef  Google Scholar 

  • Kuang Y, Zhao L et al (2010) Morphologies, preparations and applications of layered double hydroxide micro-/nanostructures. Materials 3(12):5220–5235

    Google Scholar 

  • Laachachi A, Ball V, Apaydin K, Toniazzo V, Ruch D (2011) Diffusion of polyphosphates into (poly(allylamine)-montmorillonite) multilayer films: flame retardant-intumescent films with improved oxygen barrier. Langmuir 27(22):13879–13887

    CAS  CrossRef  Google Scholar 

  • Laoutid F, Bonnaud L, Alexandre M et al (2009) New prospects in flame retardant polymer materials: from fundamentals to nanocomposites. Mater Sci Eng R 63:100–125

    CrossRef  CAS  Google Scholar 

  • Laufer G, Carosio F, Martinez R, Camino G, Grunlan JC (2011) Growth and fire resistance of colloidal silica-polyelectrolyte-clay thin film assemblies on cotton fabric. J Colloid Interface Sci 356:69–77

    CAS  CrossRef  Google Scholar 

  • Laufer G, Kirklan C, Cain AA, Grunlan JC (2012a) Claychitosan nanobrick walls: completely renewable gas barrier and flame-retardant nanocoatings. ACS Appl Mater Interfaces 4(3):1643–1649

    CAS  CrossRef  Google Scholar 

  • Laufer G, Kirkland C, Morgan A, Grunlan JC (2012b) Intumescent multilayer nanocoating, made with renewable polyelectrolytes, for flame-retardant cotton. Biomacromolecules 13:2843–2848

    CAS  CrossRef  Google Scholar 

  • Levinson E (2010) Green clothes: a surveyof people’s willingness to pay for environmentally friendly clothes. Stockholm University, Thesis

    Google Scholar 

  • Lewin M (1984a) Chemical processing of fibres and fabrics: functional finishes Part B. In: Lewin M, Sellon SB (eds) Handbook of fibre science and technology, vol II. Dekker, New York, pp 211–289

    Google Scholar 

  • Lewin M (1984b) Chemical processing of fibres and fabrics: functional finishes Part B. In: Lewin M, Sellon SB (eds) Handbook of fibre science and technology, vol II. Dekker, New York, p 458

    Google Scholar 

  • Lewin M, Weil ED (2001) Mechanisms and modes of action in flame retardancy of polymers. In: Horrocks AR, Price D (eds) Fire retard ant materials. Woodhead Publishing Ltd., CRC Press LLC, Cambridge, England, pp 31–68

    Google Scholar 

  • Li J, Liu G (2012) Flame retardancy properties of ammonium polyphosphate with crystalline form II by non-P2O5 process. Polym Degrad Stab 97:2562–2566

    CAS  CrossRef  Google Scholar 

  • Li FY, Xing YJ, Ding X, Zu Y (2007) Immobilization of papain on cotton fabric by sol-gel method. Enzyme Microb Technol 40(7):1692–1697

    CAS  CrossRef  Google Scholar 

  • Li YC, Schulz J, Grunlan JC (2009) Polyelectrolyte/nanosilicate thin-film assemblies: influence of ph on growth, mechanical behavior, and flammability. ACS Appl Mater Interfaces 1:2338–2347

    CAS  CrossRef  Google Scholar 

  • Li YC, Schulz J, Mannen S, Delhom C et al (2010a) Flame retardant behavior of polyelectrolyte—clay thin film assemblies on cotton fabric. ACS Nano 6:3325–3337

    CrossRef  CAS  Google Scholar 

  • Li YC, Schulz J, Mannen S et al (2010b) Flame retardant behavior of polyelectrolyte-clay thin film assemblies on cotton fabric. ACS Nanotechnol 4(6):3325–3337

    CAS  Google Scholar 

  • Li YC, Mannen S, Schulz J, Grunlan JC (2011a) Growth and fire protection behavior of POSS-based multilayer thin films. J Mater Chem 21:3060–3069

    CAS  CrossRef  Google Scholar 

  • Li YC, Mannen S, Morgan A, Chang S, Yang Y, Condon B, Grunlan JC (2011b) Intumescent all-polymer multilayer nanocoating capable of extinguishing flame on fabric. Adv Mater 23:3926–3931

    CAS  CrossRef  Google Scholar 

  • Liang S, Neisius NM, Gaan S (2013) Recent developments in flame retardant polymeric coatings. Prog Org Coat 76(11):1642–1665

    CAS  CrossRef  Google Scholar 

  • Liepins R, Pearce EM (1976) Chemistry and toxicity of flame retardants for plastics. Environ Health Perspect 17:55–63

    CAS  CrossRef  Google Scholar 

  • Liteplo RG, Beauchamp R, Meek ME, Chenier R (2002) Concise international chemical assessment document 40. Formaldehyde 4(5):40–48

    Google Scholar 

  • Little RW (1947) Flameproofing textile fabrics. Reinhold, New York

    Google Scholar 

  • Liu Y, Liu L (2013) Yuan M colloids preparation and characterization of casein-stabilized gold nanoparticles for catalytic applications. Surf A 417:18–25

    Google Scholar 

  • Liu W, Zhang S, Yu LH (2010) Thermal behavior and fire performance of nylon-6,6 fabric modified with acrylamide by photografting. Polym Degrad Stab 95:1842–1848

    CAS  CrossRef  Google Scholar 

  • Ma H, Tong L, Xu Z et al (2007) A novel intumescent flame retardant: synthesis and application in ABS copolymer. Polym Degrad Stab 92:720–728

    CAS  CrossRef  Google Scholar 

  • Mahltig B, Böttcher H (2003) Modified silica sol coatings for water-repellent textiles. J Sol-Gel Sci Technol 27(1):43–52

    CAS  CrossRef  Google Scholar 

  • Mahltig B, Textor T (2006) Combination of silica sol and dyes on textiles. J Sol-Gel Sci Technol 39(2):111–118

    CAS  CrossRef  Google Scholar 

  • Mahltig B, Fiedler D, Böttcher H (2004) Antimicrobial sol-gel coatings. J Sol-Gel Sci Technol 32(1–3):219–222

    CAS  CrossRef  Google Scholar 

  • Mahltig B, Haufe F, Böttcher H (2005a) Functionalisation of textiles by inorganic sole gel coatings. J Mater Chem 15(41):4385–4398

    CAS  CrossRef  Google Scholar 

  • Mahltig B, Böttcher H, Rauch H, Dieckman U, Nitsche R, Fritz T (2005b) Optimized UV protecting coatings by combination of organic and inorganic UV absorbers. Thin Solid Films 485(1–2):108–114

    CAS  CrossRef  Google Scholar 

  • Malucelli G, Bosco F, Alongi J et al (2014) Bio-macromolecules as novel green flame retardant systems for textiles: an overview. Rsc Adv 4(86):46024–46039

    CAS  CrossRef  Google Scholar 

  • Mehta RD (1976) American Dyestuff Reporter 65:39

    Google Scholar 

  • Menezes E, Paranjape M (2004) Flame reatardant in textiles. Colourage 51(7):19–26

    CAS  Google Scholar 

  • Moafi HF, Shojaie AF, Zanjanchi MA (2011) Flame-retardancy and photocatalytic properties of cellulosic fabric coated by nano-sized titanium dioxide. J Therm Anal Calorim 104(2):717–724

    CAS  CrossRef  Google Scholar 

  • Modler HW (1985) Functional properties of nonfat dairy ingredients—a review. Modification of products containing casein. J Dairy Sci 68(9):2195–2205

    CAS  CrossRef  Google Scholar 

  • OECD (1994) Selected brominated flame retardants. Paris, Organisation for Economic Co-operation and Development, Environment Directorate, 152, Risk Reduction Monograph No. 3

    Google Scholar 

  • Panda PK, Rastogi D, Jassal M (2012) Effect of atmospheric pressure helium plasma on felting and low temperature dyeing of wool. J Appl Polym Sci 124(5):4289–4297

    CAS  CrossRef  Google Scholar 

  • Peng HQ, Zhou Q, Wang DY et al (2008) A novel charring agent containing caged bicyclic phosphate and its application in intumescent flame retardant polypropylene systems. J Ind Eng Chem 14:589–597

    CAS  CrossRef  Google Scholar 

  • Pepperman AB, Vail SL (1975) Hydrolysis characteristics of some THPC-based flame retardant finished on cotton. J Fire Flammability 2:110–115

    Google Scholar 

  • Pettigrew A (1993) Halogenated flame retardants. In: Kirk-Othmer encyclopedia of chemical technology, 4th edn, vol 10. Wiley, New York, pp 954–976

    Google Scholar 

  • Price D, Anthony G et al (2001) Introduction: polymer combustion condensed phase pyrolysis and smoke formation. In: Horrocks AR, Price D (eds) Woodhead Publishing Limited: Cambridge, pp 1–30

    Google Scholar 

  • Quede A, Jama C, Supiot P et al (2002) Elaboration of fire retardant coatings on polyamide-6 using a cold plasma polymerization process. Surf Coat Technol 67(5):424–428

    CrossRef  Google Scholar 

  • Quédé A, Jama C, Supiot P, Le Bras M, Delobel R, Dessaux O et al (2002) Elaboration of fire retardant coatings on polyamide-6 using a cold plasma polymerization process. Surf Coat Technol 151–152:424–428

    CrossRef  Google Scholar 

  • Raslan WM, Rashed US, Sayad HE et al (2011) Flame retardancy using plasma nano technology. Mater Sci Appl 2:1432–1442

    CAS  Google Scholar 

  • Reddy PRS, Ashok K (2004) Ionizing radiation graft polymerized and modified flame retardant cotton fabrics. Radiat Phys Chem 72:511–516

    CrossRef  CAS  Google Scholar 

  • Rosenthal AJ, Forschirm AS, Barnes BP (1979) Production of flame retardant fiber blend having desirable textile properties comprising polyester and cotton fibers. US Patent US4151322 A

    Google Scholar 

  • Ross JH (1977) Thermal conductivity of fabrics as related to skin burn damage. J Appl Polym Sci Appl Polym Symp 31:293–312

    CAS  Google Scholar 

  • Sakka S (2003) Sol-gel science and technology. Topics and fundamental research and applications. Kluwer Academic Publishers, Norwell

    Google Scholar 

  • Samanta AK, Agarwal P (2009) Application of natural dyes on textiles. Indian J Fibre Text Res 34:384–399

    CAS  Google Scholar 

  • Samanta KK, Jassal M, Agrawal AK (2009) Improvement in water and oil absorbency of textile substrate by atmospheric pressure cold plasma treatment. Surf Coat Technol 203:1336–1342

    CAS  CrossRef  Google Scholar 

  • Samanta KK, Jassal M, Agrawal AK (2010) Antistatic effect of atmospheric pressure glow discharge cold plasma treatment on textile substrates. Fibers Polym 11(3):431–437

    CAS  CrossRef  Google Scholar 

  • Samanta KK, Joshi AG, Jassal M et al (2012) Study of hydrophobic finishing of cellulosic substrate using He/1,3-butadiene plasma at atmospheric pressure. Surf Coat Technol 213:65–76

    CAS  CrossRef  Google Scholar 

  • Schinder WD (2004) Ultraviolet protection finishes. In: Hauser PJ (ed) Chemical finishing of textiles. Woodhead Publishing in Textiles, pp 157–164

    Google Scholar 

  • Scott Richard A (2000) Textile in Defence Clothing. In: Horrocks AR, Anand SC (eds) Handbook of technical textiles. Woodhead Publishing Limited, Cambridge, pp 425–458

    CrossRef  Google Scholar 

  • Segev O, Kushmaro A, Brenner A (2009) Review environmental impact of flame retardants (Persistence and biodegradability). Int J Environ Res Public Health 6(2):478–491. doi:10.3390/ijerph6020478

    Google Scholar 

  • Shah JN, Shah SR (2013) Innovative plasma technology in textile processing: a step towards green environment. Res J Eng Sci 2(4):34–39

    Google Scholar 

  • Shahid M, Ahmad A et al (2012) Dyeing, fastness and antimicrobial properties of woolen yarns dyed with gallnut (Quercus infectoria Oliv.) extract. Dyes Pigm 95:53–61

    CAS  CrossRef  Google Scholar 

  • She X, Huang F (2009) Flame edge detection based on C-V active contour model. In: Proceedings. International Conference on Artificial Intelligence Computational Intelligence, vol 2, pp 413–417

    Google Scholar 

  • Shi LS (2000a) Characterization of the flame retardancy of EVA copolymer by plasma grafting of acrylic acid. Eur Polym J 36(12):2611–2615

    CAS  CrossRef  Google Scholar 

  • Shi LS (2000b) An approach to the flame retardation and smoke suppression of ethylene-vinyl acetate copolymer by plasma grafting of acrylamide. React Funct Polym 45(2):85–93

    CAS  CrossRef  Google Scholar 

  • Shirley Institute (1982) Protective clothing. Shirley Publication S45, Manchester

    Google Scholar 

  • Simionescu CI, Macoveanu MM, Percec S, Cazacu G, Ioanid A (1982) In: Hon DNS (ed) Graft copolymerization of lignocellulosic fibers. ACS Symposium Series 187, p 57. Washington DC

    Google Scholar 

  • Siso MIG (1996) The biotechnological utilization of cheese whey: a review. Bioresour Technol 57(7):1–11

    CrossRef  Google Scholar 

  • Smanata KK, Basak S, Chattopadhyay SK (2014) Eco-friendly coloration and functionalization of textile using plant extracts. In: Muthu SS (ed) Roadmap to sustainable textiles and clothing. Springer Publication, Singapore, pp 263–328

    Google Scholar 

  • Smith WC (1989) Protective clothing in the US. Text Asia 20(9):189–194

    Google Scholar 

  • Smith WC (1994) High temperature fibres, fabrics, markets—an overview. Man-made Text India 2:47–55

    Google Scholar 

  • Specos MMM, Garcia JJ et al (2010) Microencapsulated citronella oil for mosquito repellent finishing of cotton textiles. Trans R Soc Trop Med Hyg 104:653–658

    CAS  CrossRef  Google Scholar 

  • Sricharussin W, Sopajaree C, Maneerung T, Sangsuriya N (2009) Modification of cotton fabrics with b-cyclodextrinderivative for aroma finishing. J Tex 100:682–687

    CAS  Google Scholar 

  • Srikulkit K, Iamsamai C, Dubas ST (2006) Development of flame retardant polyphosphoric acid coating based on the polyelectrolyte multilayers technique. J Metals Mater Miner 16(2):41–45

    CAS  Google Scholar 

  • Stan D (1986) FR fibres—the European scene. Text Horiz 6:33–35

    Google Scholar 

  • Sun S, Tang R (2011) Adsorption and UV protection properties of the extract from honeysuckle onto wool. Ind Eng Chem Res 50:4217–4224

    CAS  CrossRef  Google Scholar 

  • Tang HI, Lin RK, Way TF et al (1996) A study of thermal stability of polyester containing phenyl phosphonate unit for flame retardant fiber. Polym Degrad Stab 54:313–319

    CrossRef  Google Scholar 

  • Tang HY, Chen JY, Guo YH (2010) A novel process for preparing anti-dripping polyethylene terephthalate fibers. Mater Des 31:3525–3531

    CAS  CrossRef  Google Scholar 

  • Tata J, Alongi J, Frache A (2012) Optimization of the procedure to burn textile fabrics by cone calorimeter: Part II. Results on nanoparticle-finished polyester. Fire Mater 36(7):527–536

    CAS  CrossRef  Google Scholar 

  • The Consumer Council, Austrian Standards Institute. http://www.verbraucherrat.at/download/flamehealth.pdf. Accessed 14th Sept 2015

  • Touval I (1993) Antimony and other inorganic flame retardants. In: Kirk-Othmer encyclopedia of chemical technology, 4th edn, vol 10. New York, Wiley, pp 936–954

    Google Scholar 

  • Troitzsch JH (1990) International plastics flammability handbook: principles, regulations, testing and approval, 2nd edn. Hanser Publishers, Münich

    Google Scholar 

  • Tsafack MJ, Levalois-Grützmacher J (2006a) Flame retardancy of cotton textiles by plasma-induced graft-polymerization (PIGP). Surf Coat Technol 201(6):2599–2610

    CAS  CrossRef  Google Scholar 

  • Tsafack MJ, Levalois-Grützmacher J (2006b) Plasma-induced graft-polymerization of flame retardant monomers onto PAN fabrics. Surf Coat Technol 200(11):3503–3510

    CAS  CrossRef  Google Scholar 

  • Tsafack MJ, Hochart F, Levalois-Grützmacher J (2004) Polymerization and surface modification by low pressure plasma technique. Eur Phys Appl Phys 26(3):215–219

    CAS  CrossRef  Google Scholar 

  • Usha B, Agrawal P, Warmoeskerken M (2011) Applications of β-cyclodextrins in textiles. AUTEX Res J 11(4):94–101

    Google Scholar 

  • Van der Schueren L, De Clerck K et al (2012) Novel cellulose and polyamide halochromic textile sensors based on the encapsulation of methyl red into a sol-gel matrix. Sens Actuators B 162(1):27–34

    CrossRef  CAS  Google Scholar 

  • Van Krevelen DW (1977) Flame resistance of chemical fibres. J Appl Polym Sci Appl Polym Symp 31:269–292

    Google Scholar 

  • Vinatage resources (2009) http://www.vintagevisage.net/Burn_Chart.html. Accessed 23rd Aug 2015

  • Vögtle F (1991) Supramolecular chemistry, an introduction. Wiley, New York

    Google Scholar 

  • Vytenis B, Richard HH et al (1988) Fire-hazard comparison of fire retarded and non fire retarded products. NBS Special publication 749, US Department of Commerce

    Google Scholar 

  • Wakida T, Tokino S, Niu S et al (1993) Characterization of wool and polyethylene terephthalate fabrics and film treated with low temperature plasma under atmospheric pressure. Text Res J 63:433–438

    CAS  CrossRef  Google Scholar 

  • Wang L, Yoshida J, Ogata N (2001) Self-assembled supramolecular films derived from marine deoxyribonucleic acid (DNA)-cationic surfactant complexes: large-scale preparation and optical and thermal properties. Chem Mater 13:1273–1281

    CAS  CrossRef  Google Scholar 

  • Wang LS, Kang HB, Wang SB et al (2007) Solubilities, thermostabilities and flame retardance behaviour of phosphorus-containing flame retardants and copolymers. Fluid Phase Equilib 258:99–107

    CAS  CrossRef  Google Scholar 

  • Weil ED (1993) Phosphorus flame retardants. In: Kirk-Othmer encyclopedia of chemical technology, 4th edn, vol 10. Wiley, New York, pp 976–998

    Google Scholar 

  • Weil ED (1993) Phosphorus flame retardants. In: Kirk-Othmer encyclopedia of chemical technology, 4th edn, vol 10. Wiley, New York, pp 986–993

    Google Scholar 

  • Weil ED, Kuryla C, Papa AJW (eds) (1975) Flame retardancy of polymeric materials, vol 3. Marcel Dekker, New York

    Google Scholar 

  • Wit N, De J (1998) Marschall Rhône-Poulenc award lecture. Nutritional and functional characteristics of whey proteins in food products. J Dairy Sci 81(3):597–608

    Google Scholar 

  • Wolf R, Kaul BL (1992) Plastics, additives. In: Ullmann’s encyclopedia of industrial chemistry. VCH Verlag, Weinheim, vol A20, pp 459–507

    Google Scholar 

  • Wu W, Yang CQ (2004) Comparison of DMDHEU and melamine-formaldehyde as the binding agents for a hydroxy-functional organophosphorus flame retarding agent on cotton. J Fire Sci 22:125–143

    CAS  CrossRef  Google Scholar 

  • Wu W, Yang C (2006) Comparison of different reactive organophosphorus flame retardant agents for cotton: Part 1. The bonding of the flame retardant agents to cotton. Polym Degrad Stab 91:2541–2548

    CAS  CrossRef  Google Scholar 

  • Wu X, Yang CQ (2009) Flame retardant finishing of cotton fleece fabric: part IV-bifunctional carboxylic acids. J Fire Sci 27(5):431–446

    CAS  CrossRef  Google Scholar 

  • Xia XN, Lu YB, Zhou X et al (2006) Synthesis of novel phosphorous-containing biphenol, 2-(5-dimethyl-4- phenyl-2-oxy-1, 3,2-dioxa-phosphorin-6-yl)-1, 4-benzenediol and its application as flame-retardant in epoxy resin. J Appl Polym Sci 102:3842–3849

    CAS  CrossRef  Google Scholar 

  • Xing XJ, Ding J (2007) UV photo-stabilization of tetrabutyl titanate for aramid fibers via sol-gel surface modification. J Appl Polym Sci 103(5):3113–3119

    CAS  CrossRef  Google Scholar 

  • Xing YJ, Yang XJ, Dai JJ (2007) Antimicrobial finishing of cotton textile based on water glass by sol-gel method. J Sol-Gel Sci Technol 43(2):187–192

    CAS  CrossRef  Google Scholar 

  • Xue CH, Ji ST, Chen HZ, Wang M (2008) Superhydrophobic cotton fabrics prepared by sol-gel coating of TiO2 and surface hydrophobization. Sci Technol Adv Mater 9(3):1–5

    Google Scholar 

  • Yang CQ, Wu W (2003) Combination of a hydroxylalkyl-functional organophorus oligomer and a multifunctional carboxylic acid as a flame retardant finishing system for cotton: Part II. Formation of calcium salt during laundering and its suppression. Fire Mater 27:239–251

    CAS  CrossRef  Google Scholar 

  • Yang H, Yang CQ (2005) Durable flame retardant finishing of the nylon/cotton blend fabric using a hydroxyl-functional organophosphorus oligomer. Polym Degrad Stab 88:363–369

    CAS  CrossRef  Google Scholar 

  • Yang H, Yang CQ (2007) N on formaldehyde durable flame-retardant finishing of Nomex/cotton blend using a hydroxyl-functional organophosphorus oligomer and 1,2,3,4-butanetetracarboxylic acid. J Fire Sci 25:425–446

    CAS  CrossRef  Google Scholar 

  • Yasuda H (1985) Plasma polymerization. Academic Press, New York

    Google Scholar 

  • Yu M, Gu G, Meng WD, Qing FL (2007) Superhydrophobic cotton fabric coating based on a complex layer of silica nanoparticles and perfluorooctylated quaternary ammonium silane coupling agent. Appl Surf Sci 253(7):3669–3673

    CAS  CrossRef  Google Scholar 

  • Zhan J, Song L, Nie S et al (2009) Combustion properties and thermal degradation behavior of polylactide with an effective intumescent flame retardant. Polym Degrad Stab 94:291–298

    CAS  CrossRef  Google Scholar 

  • Zhou T (2012) Study on flame retardant finish of PET fabrics with surface grafting modification technology. China Text Leader 12:60–62

    Google Scholar 

  • Zhou T, Lu D (2012) Study on anti-crease and flame retardant finish of cotton fabrics with phosphino polycarboxylic acid. China Text Leader 10:82–85

    Google Scholar 

  • Zhou J, Ritter H (2010) Cyclodextrin functionalized polymers as drug delivery systems. Polym Chem 1:1552

    CAS  CrossRef  Google Scholar 

  • Zhu P, Sui SY (2004) A study of pyrolysis and pyrolysis products of flame-retardant cotton fabrics by DSC, TGA, and PY-GC-MS. J Anal Appl Pyrolysis 71:645–655

    CAS  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asimananda Khandual .

Editor information

Editors and Affiliations

Rights and permissions

Open Access This chapter is distributed under the terms of the Creative Commons Attribution Noncommercial License, which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Khandual, A. (2016). Green Flame Retardants for Textiles. In: Muthu, S., Gardetti, M. (eds) Green Fashion. Environmental Footprints and Eco-design of Products and Processes. Springer, Singapore. https://doi.org/10.1007/978-981-10-0245-8_6

Download citation