Skip to main content

Synthetic Fibres for Composite Applications

  • Chapter
  • First Online:
Fibrous and Textile Materials for Composite Applications

Part of the book series: Textile Science and Clothing Technology ((TSCT))

Abstract

This chapter gives the details of various synthetic fibres (both organic and inorganic such as glass, carbon, aramides, polyolefins, ceramic fibres, etc.) used to reinforce composite materials for conventional as well as very high-tech applications. Production and properties of these fibres and also the most common applications in fibre reinforced composites are included in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Roberts T (2011) The carbon fibre industry worldwide 2011–2020: an evaluation of current markets and future supply and demand. Materials Technology Publications, Watford

    Google Scholar 

  2. Jec Group (2011) Global glass-fibre production: changes across the board. http://www.jeccomposites.com/news/composites-news/global-glass-fibre-production-changes-across-board. Accessed 24 Jun 2015

  3. Clauß B (2008) Ceramic matrix composites. In: Krenke W (ed) Fibers for ceramic matrix composites. Wiley, Weinheim, pp 1–20

    Chapter  Google Scholar 

  4. Wlochowicz A (1984) Kohlenstoffasern aus Pech, ihre Herstellung und Eigenschaften Textiltechnik 34(11):595

    CAS  Google Scholar 

  5. Edison TA (1879) U. S. Pat 223:898

    Google Scholar 

  6. Houtz RC (1950) Orlon acrylic fibre: chemistry and properties. J Text Res 20:786–801

    Article  CAS  Google Scholar 

  7. Shindo A (1959) Japanisches Patent 28287

    Google Scholar 

  8. Shindo A (1962) Japanisches Patent 29270

    Google Scholar 

  9. Johnson W, Phillips LN, Watt W (1964) The production of carbon fibres Britische Patentmeldung GB 1,110,791

    Google Scholar 

  10. Johnson W, Watt W, Phillips LN, Moreton R (1965) Improvements in or relating to carbonisable fibre and carbon fibre and their production. British Patent GB 1,166,251

    Google Scholar 

  11. Morgan P (2005) Carbon fibres and their composites. Taylor & Francis, Boca Raton

    Book  Google Scholar 

  12. Masson J (1995) Acrylic fiber technology and applications. Marcel Dekker, New York

    Google Scholar 

  13. Gries T, Rixe S, Steffens M, Cremer C (2002) Faserstoff-Tabellen nach P. A. Koch: Polyacrylfasern, 6. Ausgabe Eigenverlag, Aachen

    Google Scholar 

  14. Huang J, Baird DG, McGrath JE (2013) Melt-spinning of polyacrylonitrile fibers as carbon fiber precursors. Paper presented at the 245th ACS national meeting and exposition, New Orleans, Louisiana, 7–11 April 2013

    Google Scholar 

  15. Kilic S, Michalik S, Wang Y, Johnson JK, Enick RM, Beckman EJ (2007) Phase behavior of oxygen-containing polymers in CO2. Macromolecules 40:1332–1341

    Article  CAS  Google Scholar 

  16. Beyer H (1998) Lehrbuch der Organischen Chemie. 23.Aufl.. S. Hirzel Verlag, Stuttgart

    Google Scholar 

  17. Foley A, Frohs W, Hauke T, Heine M, Jäger H, Sitter S (2008) Carbon fibers. In: Ullmann’s encyclopedia of industrial chemistry, fibers. Chap. 5 Synthetic inorganic. Wiley, Weinheim, p 291ff

    Google Scholar 

  18. Fitzer E, Manocha LM (1998) Carbon reinforcements and carbon/carbon composites. Springer, Berlin

    Book  Google Scholar 

  19. De Palmenaer A, Langner C, Linke O, Lüpfert L, Seide G, Gries T, Fourné R (2014) Stabilization of PAN fibers by contact heat transfer. Chem Fibers Int 65(1):45–46

    Google Scholar 

  20. Menendez JA, Arenillas A, Fidalgo B, Fernandez Y, Zubizarreta L, Calvo EG, Bermudez JM (2010) Microwave heating processes involving carbon materials. Fuel Process Technol 91(1):1–8

    Article  CAS  Google Scholar 

  21. Kim S-Y, Kim SY, Lee S, Jo S, Im Y-H, Lee H-S (2015) Microwave plasma carbonization for the fabrication of polyacrylonitrile-based carbon fiber. Polymer 56(15):590–595

    Article  CAS  Google Scholar 

  22. Gulyas J, Földes E, Lazar A, Pukanszky B (2001) Electrochemical oxidation of carbon fibers: surface chemistry and adhesion. Compos A 32:353–360

    Article  Google Scholar 

  23. Erden S, Kingslei KCH, Lamoriniere S, Lee A, Yildiz H, Bismarck A (2010) Continuous atmospheric plasma oxidation of carbon fibres: influence on the fibre surface and bulk properties and adhesion to polyamide 12. Plasma Chem Plasma Process 40:471–487

    Article  Google Scholar 

  24. Santos AL, Botelho EC, Kostov KG, Nascente PAP, da Silva LLG (2013) Atmospheric plasma treatment of carbon fibers for enhancement of their adhesion properties. IEEE Trans Plasma Sci 41(2):319–324

    Article  CAS  Google Scholar 

  25. Schürmann H (2005) Konstruieren mit Faser-Kunststoff-Verbunden. Springer, Berlin

    Google Scholar 

  26. Donnet JB, Wang TK, Peng JCM (eds) (1998) Carbon fibers, 3rd edn. Dekker, New York

    Google Scholar 

  27. Fink HP, Fischer S (2005) Celluloseverarbeitung - umweltfreundliche Technologien auf dem Vormarsch. Praxis der Naturwissenschaften - Chemie in der Schule 54(7):18–25

    CAS  Google Scholar 

  28. Wu Q, Pan D (2002) A new cellulose based carbon fiber from a lyocell precursor. Text Res J 72:405–410

    Article  CAS  Google Scholar 

  29. Otani S (1995) On the carbon fiber from the molten pyrolysis products. Carbon 3(1):31–34

    Article  Google Scholar 

  30. Paiva MC, Lin C, Haynie T, Kotasthane P, Ogale AA, Kennedy JM, Edie DD (2001) Carbon fibers from alternative precursors. Paper presented at the international conference on carbon, Lexington, 14–19 July 2001

    Google Scholar 

  31. Morales J (2013) Polyethylene. Global overview SPI flexible film & bag. Paper presented at the SPI flexible film and bag conference, Nashville

    Google Scholar 

  32. Sagel E (2012) Polyethylene global overview IHS (Hrsg.): Expo Foro Pemex, Mexiko-Stadt

    Google Scholar 

  33. Kadla JF, Kubo S, Venditti RA, Gilbert RD, Compere AL, Griffith W (2002) Lignin-based carbon fibers for composite fiber applications. Carbon 40(15):2913–2920

    Article  CAS  Google Scholar 

  34. Kubo S, Kadla JF (2005) Kraft lignin/poly(ethylene oxide) blends: effect of lignin structure on miscibility and hydrogen bonding. J Appl Polym Sci 98:1437–1444

    Article  CAS  Google Scholar 

  35. Colvin BG, Storr P (1974) The crystal structure of polyacrylonitrile. Eur Polymer J 10:337–340

    Article  CAS  Google Scholar 

  36. Anghelina VF, Popescu IV, Gaba A, Popescu IN, Despa V, Ungureanu D (2010) Structural analysis of PAN fiber by X-ray diffraction. J Sci Art 10:89–94

    Google Scholar 

  37. Yu M, Wang C, Bai Y, Wang Y, Xu Y (2006) Influence of precursor properties on the thermal stabilization of polyacrylonitrile fibers. Polym Bull 57:757–763

    Article  CAS  Google Scholar 

  38. Mukhopadhyay SK, Zhu Y (1995) Structure-property relationships of PAN precursor fibers during thermo-oxidative stabilization. Text Res J 65:25–31

    Article  CAS  Google Scholar 

  39. Lee S, Kim J, Ku BC, Kim J, Joh HI (2012) Structural evolution of polyacrylonitrile fibers in stabilization and carbonization. Adv Chem Eng Sci 2:275–282

    Article  CAS  Google Scholar 

  40. Anderson DP (1991) Carbon fiber morphology, II: expanded wide angle X-ray diffraction studies of carbon fibers. Wright Research & Development Center, US Air Force

    Google Scholar 

  41. Nohara LB, Filho GP, Nohara EL, Kleinke MU, Rezende MC (2005) Evaluation of carbon fiber surface treated by chemical and cold plasma processes. Mater Res 8:281–286

    Article  Google Scholar 

  42. Saelhoff AK, Jäger M, Steinmann W, Gries T (2014) Surface treatment of carbon fibres—increasing the interlaminar shear strength in CFRP. In: Dörfel A (ed) Proceedings of the 8th Aachen-Dresden international textile conference, Dresden

    Google Scholar 

  43. Chand S (2000) J Mater Sci 5:1303–1313

    Article  Google Scholar 

  44. Warnecke M, de Palmenaer A, Veit D, Seide G, Gries T (2013) Fibre-table carbon fibres. Shaker, Aachen

    Google Scholar 

  45. Eiswirth M, Schwankner M (1982) Graphit und seine Verbindungen Praxis der Naturwissenschaften. Chemie 31:137–143

    CAS  Google Scholar 

  46. Frohs W (1989) Untersuchungen zum thermischen Abbau von Polyacrylnitril (PAN) – Precursorfasern zu Carbonfasern im Temperaturbereich von 500 bis 2800 °C. Dissertation, Eigenverlag, Universität Karlsruhe

    Google Scholar 

  47. Peebles LH (1995) Carbon fibres—formation, structure, and properties. CRC Press Inc, Florida

    Google Scholar 

  48. CompositesWorld (2015) Supply and demand: advanced fibers. http://www.compositesworld.com/articles/supply-and-demand-advanced-fibers-2015. Accessed 04 Aug 2015

  49. Walker A (2014) Next generation carbon fibre. Paper presented at the GOCarbonFibre Conference, Cologne, 9–10 October 2014

    Google Scholar 

  50. Jäger H (2010) Carbonfasern und ihre Verbundwerkstoffe: Herstellungsprozesse, Anwendungen und Marktentwicklung. Süddeutscher Verlag onpact

    Google Scholar 

  51. Aucken A (2014) Cytec. Paper presented at the GOCarbonFibre conference, Cologne, 9–10 October 2014

    Google Scholar 

  52. Verdenhalven J (2014) CFRP, the steel of the 21st Century … or the story of fishes. Paper presented at the GOCarbonFibre Conference, Cologne, 9–10 Oct 2014

    Google Scholar 

  53. Monk C (2014) Carbon fibre—challenges and benefits for use in wind turbine blade design. Paper presented at the GOCarbonFibre conference, Cologne, 9–10 Oct 2014

    Google Scholar 

  54. Mafeld A (2014) The global market for composite pressure vessels—drivers, challenges and trends. Paper presented at the GOCarbonFibre conference, Cologne, 9–10 Oct 2014

    Google Scholar 

  55. Regan B (2014) Carbon fibre for energy storage applications. Paper presented at the GOCarbonFibre conference, Cologne, 9–10 Oct 2014

    Google Scholar 

  56. Chen PW, Chung DDL (1995) Carbon-fibre-reinforced concrete as an intrinsically smart concrete for damage assessment during dynamic loading. J Am Ceramic Soc 78(3):816–818

    Article  CAS  Google Scholar 

  57. Witten E, Kraus T, Kühnel M (2014) Composite market report 2014: market developments, trends, challenges and opportunities

    Google Scholar 

  58. Loewenstein KL (1993) The manufacturing technology of continuous glass fibers. Elsevier, Amsterdam

    Google Scholar 

  59. BISFA (2000) Terminology of man-made fibres. BISFA, Brussels

    Google Scholar 

  60. Wallenberger FT, Watson JC, Li H (2001) Glass Fibers. In: ASM Handbook 21. ASM International, Materials Park (OH)

    Google Scholar 

  61. Chawla K, Tekwani B (2013) Studies of glass fiber reinforced concrete composites. Int J Struct Civil Eng Res 2(3)

    Google Scholar 

  62. Pico D, Wilms C, Seide G, Gries T, Kleinholz R, Tiesler H (2010) “Fibers, 12. Glass Fibers” Ullmann’s encyclopedia of industrial chemistry 7, Wiley, Weinheim [u.a.], 2012. doi:10.1002/14356007

  63. Gardiner G (2009) The making of glass fiber, composites technology 15(2), Gardner Publications Incorporated

    Google Scholar 

  64. Zarzycki J (1991) Glasses and the vitreous state. Cambridge University Press, Cambridge (Cambridge solid state science series)

    Google Scholar 

  65. Ya M, Deubener J, Yue Y (2008) Enthalpy and anisotropy relaxation of glass fibers. J Am Ceram Soc 91:745–752. doi:10.1111/j.1551-2916.2007.02100.x

    Article  CAS  Google Scholar 

  66. Witten E, Schuster A (2010) Composites-Marktbericht: Marktentwicklungen, Herausforderungen und Chancen AVK – Industrievereinigung verstärkte Kunststoffe

    Google Scholar 

  67. N.N. (2011) Global glass-fibre production: tailoring better for needs, JEC Compos Mag 66, 16–18

    Google Scholar 

  68. Pico D, Wilms C, Seide G, Gries T (2011) Natural volcanic rock fibers. Man-Made Fiber Yearb 2011, pp 45–46

    Google Scholar 

  69. Hennicke HW (1967) Zum Begriff Keramik und zur Einteilung keramischer Werkstoffe. Berichte d. Deutsch. Ker. Gesellschaft 44:209–211

    Google Scholar 

  70. Flemming M, Ziegmann G, Roth S (1995) Faserverbundbauweisen. Springer, Berlin

    Book  Google Scholar 

  71. Kochendörfer R, Krenkel W (2003) Möglichkeiten und Grenzen faserverstärkter Keramiken. In: Krenkel W (ed) Keramische Verbundwerkstoffe. Wiley, Weinheim, pp 1–22

    Google Scholar 

  72. Krenkel W (2003) Keramische Verbundwerkstoffe. Wiley, Weinheim

    Google Scholar 

  73. Kroschel M (2001) Amorphe B/Si/C/N-Hochleistungskeramiken aus Einkomponentenvorläu-fern. Universität Bonn Dissertation, Bonn

    Google Scholar 

  74. Hench LL, West JK (1990) The sol-gel process. Chem Rev 90(1):33–72

    Article  CAS  Google Scholar 

  75. Chawla KK (2001) Composite materials—science and engineering. Springer, Berlin

    Google Scholar 

  76. Wallenberger FT, Bingham PA (2010) Fiberglass and glass technology. Springer, New York

    Book  Google Scholar 

  77. Brachtel G (2004) Keine Keramik ohne Organik - Festschrift 125 Jahre keramische Ausbildung an der FH Koblenz. Koblenz

    Google Scholar 

  78. Fibermax composites. http://www.aramid.eu/. Accessed 24 Jun 2015

  79. Fibermax composites. http://www.aramid.eu/history.html. Accessed 24 Jun 2015

  80. Brandrup J, Immergut E, Grulke E, Abe A, Bloch D (eds) (1999) Polymer handbook, 4th edn. Wiley, New York

    Google Scholar 

  81. Blumberg, Hillermeier, Krüger (1982) Aramid-Prozess. Melliand Textilberichte

    Google Scholar 

  82. Wulfhorst B, Büsgen A (1989) Faserstofftabelle nach P.-A. Koch: Aramidfasern. Chemiefasern/Textilindustrie 39:1263–1270

    Google Scholar 

  83. Wulfhorst B, Gries T, Veit D (2006) Textile technology. Hanser, Munich

    Book  Google Scholar 

  84. MarketsandMarkets (2014). http://www.marketsandmarkets.com/Market-Reports/aramid-fibers-market-112849061.html. Accessed 24 Jun 2015

  85. Dyneema (2015). http://www.dsm.com/products/dyneema/en_GB/home.html. Accessed 04 Aug 2015

  86. Ticona (2001). http://www.hipolymers.com.ar/pdfs/gur/diseno/GUR%20%28PE-UHMW%29.pdf. Accessed 24 Jun 2015

  87. Kauffman GB (1993) Rayon: the first semi-synthetic fiber product. J Chem Educ 70(11):887

    Article  CAS  Google Scholar 

  88. Ahmed S, Bukhari IA, Siddiqui JI, Quereshi SA (2006) A study on properties of polypropylene fiber reinforced concrete. Paper presented at the 31st conference on our world in concrete & structures, Singapore, 16–17 Aug 2006

    Google Scholar 

  89. Geary JM, Goodby JW, Kmetz AR, Patel JS (1987) The mechanism of polymer alignment of liquid-crystal materials. J Appl Phys 62:4100

    Article  CAS  Google Scholar 

  90. Kravaev P, Stolyarov O, Seide G, Gries T (2013) A method for investigating blending quality of commingled yarns. Text Res J 83:122–129

    Article  CAS  Google Scholar 

  91. Choi BD, Diestel O, Offermann P (1999) Commingled carbon/PEEK hybrid yarns for use in textile reinforced high performance rotors. Paper presented at the 12th international conference on composite materials (ICCM), Paris, 5–9 July 1999

    Google Scholar 

  92. Biron M (2007) Thermoplastics and thermoplastic composites. Elsevier, Amsterdam

    Google Scholar 

  93. Tavanaie MA, Shoushtari AM, Goharpey F, Motjahedi MR (2013) Matrix-fibril morphology development of polypropylene/poly(butylenes terephthalate) blend fibers at different zones of melt spinning process and its relation to mechanical properties. Fibers Polym 14(3):396–404

    Article  CAS  Google Scholar 

  94. Alcock B, Cabrera NO, Barkoula N-M, Loos J, Peijs T (2006) The mechanical properties of unidirectional all-polypropylene composites. Comp Part A 37:716–726

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davide Pico .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Pico, D., Steinmann, W. (2016). Synthetic Fibres for Composite Applications. In: Rana, S., Fangueiro, R. (eds) Fibrous and Textile Materials for Composite Applications. Textile Science and Clothing Technology. Springer, Singapore. https://doi.org/10.1007/978-981-10-0234-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-0234-2_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-0232-8

  • Online ISBN: 978-981-10-0234-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics