Abstract
This chapter gives the details of various synthetic fibres (both organic and inorganic such as glass, carbon, aramides, polyolefins, ceramic fibres, etc.) used to reinforce composite materials for conventional as well as very high-tech applications. Production and properties of these fibres and also the most common applications in fibre reinforced composites are included in this chapter.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Roberts T (2011) The carbon fibre industry worldwide 2011–2020: an evaluation of current markets and future supply and demand. Materials Technology Publications, Watford
Jec Group (2011) Global glass-fibre production: changes across the board. http://www.jeccomposites.com/news/composites-news/global-glass-fibre-production-changes-across-board. Accessed 24 Jun 2015
Clauß B (2008) Ceramic matrix composites. In: Krenke W (ed) Fibers for ceramic matrix composites. Wiley, Weinheim, pp 1–20
Wlochowicz A (1984) Kohlenstoffasern aus Pech, ihre Herstellung und Eigenschaften Textiltechnik 34(11):595
Edison TA (1879) U. S. Pat 223:898
Houtz RC (1950) Orlon acrylic fibre: chemistry and properties. J Text Res 20:786–801
Shindo A (1959) Japanisches Patent 28287
Shindo A (1962) Japanisches Patent 29270
Johnson W, Phillips LN, Watt W (1964) The production of carbon fibres Britische Patentmeldung GB 1,110,791
Johnson W, Watt W, Phillips LN, Moreton R (1965) Improvements in or relating to carbonisable fibre and carbon fibre and their production. British Patent GB 1,166,251
Morgan P (2005) Carbon fibres and their composites. Taylor & Francis, Boca Raton
Masson J (1995) Acrylic fiber technology and applications. Marcel Dekker, New York
Gries T, Rixe S, Steffens M, Cremer C (2002) Faserstoff-Tabellen nach P. A. Koch: Polyacrylfasern, 6. Ausgabe Eigenverlag, Aachen
Huang J, Baird DG, McGrath JE (2013) Melt-spinning of polyacrylonitrile fibers as carbon fiber precursors. Paper presented at the 245th ACS national meeting and exposition, New Orleans, Louisiana, 7–11 April 2013
Kilic S, Michalik S, Wang Y, Johnson JK, Enick RM, Beckman EJ (2007) Phase behavior of oxygen-containing polymers in CO2. Macromolecules 40:1332–1341
Beyer H (1998) Lehrbuch der Organischen Chemie. 23.Aufl.. S. Hirzel Verlag, Stuttgart
Foley A, Frohs W, Hauke T, Heine M, Jäger H, Sitter S (2008) Carbon fibers. In: Ullmann’s encyclopedia of industrial chemistry, fibers. Chap. 5 Synthetic inorganic. Wiley, Weinheim, p 291ff
Fitzer E, Manocha LM (1998) Carbon reinforcements and carbon/carbon composites. Springer, Berlin
De Palmenaer A, Langner C, Linke O, Lüpfert L, Seide G, Gries T, Fourné R (2014) Stabilization of PAN fibers by contact heat transfer. Chem Fibers Int 65(1):45–46
Menendez JA, Arenillas A, Fidalgo B, Fernandez Y, Zubizarreta L, Calvo EG, Bermudez JM (2010) Microwave heating processes involving carbon materials. Fuel Process Technol 91(1):1–8
Kim S-Y, Kim SY, Lee S, Jo S, Im Y-H, Lee H-S (2015) Microwave plasma carbonization for the fabrication of polyacrylonitrile-based carbon fiber. Polymer 56(15):590–595
Gulyas J, Földes E, Lazar A, Pukanszky B (2001) Electrochemical oxidation of carbon fibers: surface chemistry and adhesion. Compos A 32:353–360
Erden S, Kingslei KCH, Lamoriniere S, Lee A, Yildiz H, Bismarck A (2010) Continuous atmospheric plasma oxidation of carbon fibres: influence on the fibre surface and bulk properties and adhesion to polyamide 12. Plasma Chem Plasma Process 40:471–487
Santos AL, Botelho EC, Kostov KG, Nascente PAP, da Silva LLG (2013) Atmospheric plasma treatment of carbon fibers for enhancement of their adhesion properties. IEEE Trans Plasma Sci 41(2):319–324
Schürmann H (2005) Konstruieren mit Faser-Kunststoff-Verbunden. Springer, Berlin
Donnet JB, Wang TK, Peng JCM (eds) (1998) Carbon fibers, 3rd edn. Dekker, New York
Fink HP, Fischer S (2005) Celluloseverarbeitung - umweltfreundliche Technologien auf dem Vormarsch. Praxis der Naturwissenschaften - Chemie in der Schule 54(7):18–25
Wu Q, Pan D (2002) A new cellulose based carbon fiber from a lyocell precursor. Text Res J 72:405–410
Otani S (1995) On the carbon fiber from the molten pyrolysis products. Carbon 3(1):31–34
Paiva MC, Lin C, Haynie T, Kotasthane P, Ogale AA, Kennedy JM, Edie DD (2001) Carbon fibers from alternative precursors. Paper presented at the international conference on carbon, Lexington, 14–19 July 2001
Morales J (2013) Polyethylene. Global overview SPI flexible film & bag. Paper presented at the SPI flexible film and bag conference, Nashville
Sagel E (2012) Polyethylene global overview IHS (Hrsg.): Expo Foro Pemex, Mexiko-Stadt
Kadla JF, Kubo S, Venditti RA, Gilbert RD, Compere AL, Griffith W (2002) Lignin-based carbon fibers for composite fiber applications. Carbon 40(15):2913–2920
Kubo S, Kadla JF (2005) Kraft lignin/poly(ethylene oxide) blends: effect of lignin structure on miscibility and hydrogen bonding. J Appl Polym Sci 98:1437–1444
Colvin BG, Storr P (1974) The crystal structure of polyacrylonitrile. Eur Polymer J 10:337–340
Anghelina VF, Popescu IV, Gaba A, Popescu IN, Despa V, Ungureanu D (2010) Structural analysis of PAN fiber by X-ray diffraction. J Sci Art 10:89–94
Yu M, Wang C, Bai Y, Wang Y, Xu Y (2006) Influence of precursor properties on the thermal stabilization of polyacrylonitrile fibers. Polym Bull 57:757–763
Mukhopadhyay SK, Zhu Y (1995) Structure-property relationships of PAN precursor fibers during thermo-oxidative stabilization. Text Res J 65:25–31
Lee S, Kim J, Ku BC, Kim J, Joh HI (2012) Structural evolution of polyacrylonitrile fibers in stabilization and carbonization. Adv Chem Eng Sci 2:275–282
Anderson DP (1991) Carbon fiber morphology, II: expanded wide angle X-ray diffraction studies of carbon fibers. Wright Research & Development Center, US Air Force
Nohara LB, Filho GP, Nohara EL, Kleinke MU, Rezende MC (2005) Evaluation of carbon fiber surface treated by chemical and cold plasma processes. Mater Res 8:281–286
Saelhoff AK, Jäger M, Steinmann W, Gries T (2014) Surface treatment of carbon fibres—increasing the interlaminar shear strength in CFRP. In: Dörfel A (ed) Proceedings of the 8th Aachen-Dresden international textile conference, Dresden
Chand S (2000) J Mater Sci 5:1303–1313
Warnecke M, de Palmenaer A, Veit D, Seide G, Gries T (2013) Fibre-table carbon fibres. Shaker, Aachen
Eiswirth M, Schwankner M (1982) Graphit und seine Verbindungen Praxis der Naturwissenschaften. Chemie 31:137–143
Frohs W (1989) Untersuchungen zum thermischen Abbau von Polyacrylnitril (PAN) – Precursorfasern zu Carbonfasern im Temperaturbereich von 500 bis 2800 °C. Dissertation, Eigenverlag, Universität Karlsruhe
Peebles LH (1995) Carbon fibres—formation, structure, and properties. CRC Press Inc, Florida
CompositesWorld (2015) Supply and demand: advanced fibers. http://www.compositesworld.com/articles/supply-and-demand-advanced-fibers-2015. Accessed 04 Aug 2015
Walker A (2014) Next generation carbon fibre. Paper presented at the GOCarbonFibre Conference, Cologne, 9–10 October 2014
Jäger H (2010) Carbonfasern und ihre Verbundwerkstoffe: Herstellungsprozesse, Anwendungen und Marktentwicklung. Süddeutscher Verlag onpact
Aucken A (2014) Cytec. Paper presented at the GOCarbonFibre conference, Cologne, 9–10 October 2014
Verdenhalven J (2014) CFRP, the steel of the 21st Century … or the story of fishes. Paper presented at the GOCarbonFibre Conference, Cologne, 9–10 Oct 2014
Monk C (2014) Carbon fibre—challenges and benefits for use in wind turbine blade design. Paper presented at the GOCarbonFibre conference, Cologne, 9–10 Oct 2014
Mafeld A (2014) The global market for composite pressure vessels—drivers, challenges and trends. Paper presented at the GOCarbonFibre conference, Cologne, 9–10 Oct 2014
Regan B (2014) Carbon fibre for energy storage applications. Paper presented at the GOCarbonFibre conference, Cologne, 9–10 Oct 2014
Chen PW, Chung DDL (1995) Carbon-fibre-reinforced concrete as an intrinsically smart concrete for damage assessment during dynamic loading. J Am Ceramic Soc 78(3):816–818
Witten E, Kraus T, Kühnel M (2014) Composite market report 2014: market developments, trends, challenges and opportunities
Loewenstein KL (1993) The manufacturing technology of continuous glass fibers. Elsevier, Amsterdam
BISFA (2000) Terminology of man-made fibres. BISFA, Brussels
Wallenberger FT, Watson JC, Li H (2001) Glass Fibers. In: ASM Handbook 21. ASM International, Materials Park (OH)
Chawla K, Tekwani B (2013) Studies of glass fiber reinforced concrete composites. Int J Struct Civil Eng Res 2(3)
Pico D, Wilms C, Seide G, Gries T, Kleinholz R, Tiesler H (2010) “Fibers, 12. Glass Fibers” Ullmann’s encyclopedia of industrial chemistry 7, Wiley, Weinheim [u.a.], 2012. doi:10.1002/14356007
Gardiner G (2009) The making of glass fiber, composites technology 15(2), Gardner Publications Incorporated
Zarzycki J (1991) Glasses and the vitreous state. Cambridge University Press, Cambridge (Cambridge solid state science series)
Ya M, Deubener J, Yue Y (2008) Enthalpy and anisotropy relaxation of glass fibers. J Am Ceram Soc 91:745–752. doi:10.1111/j.1551-2916.2007.02100.x
Witten E, Schuster A (2010) Composites-Marktbericht: Marktentwicklungen, Herausforderungen und Chancen AVK – Industrievereinigung verstärkte Kunststoffe
N.N. (2011) Global glass-fibre production: tailoring better for needs, JEC Compos Mag 66, 16–18
Pico D, Wilms C, Seide G, Gries T (2011) Natural volcanic rock fibers. Man-Made Fiber Yearb 2011, pp 45–46
Hennicke HW (1967) Zum Begriff Keramik und zur Einteilung keramischer Werkstoffe. Berichte d. Deutsch. Ker. Gesellschaft 44:209–211
Flemming M, Ziegmann G, Roth S (1995) Faserverbundbauweisen. Springer, Berlin
Kochendörfer R, Krenkel W (2003) Möglichkeiten und Grenzen faserverstärkter Keramiken. In: Krenkel W (ed) Keramische Verbundwerkstoffe. Wiley, Weinheim, pp 1–22
Krenkel W (2003) Keramische Verbundwerkstoffe. Wiley, Weinheim
Kroschel M (2001) Amorphe B/Si/C/N-Hochleistungskeramiken aus Einkomponentenvorläu-fern. Universität Bonn Dissertation, Bonn
Hench LL, West JK (1990) The sol-gel process. Chem Rev 90(1):33–72
Chawla KK (2001) Composite materials—science and engineering. Springer, Berlin
Wallenberger FT, Bingham PA (2010) Fiberglass and glass technology. Springer, New York
Brachtel G (2004) Keine Keramik ohne Organik - Festschrift 125 Jahre keramische Ausbildung an der FH Koblenz. Koblenz
Fibermax composites. http://www.aramid.eu/. Accessed 24 Jun 2015
Fibermax composites. http://www.aramid.eu/history.html. Accessed 24 Jun 2015
Brandrup J, Immergut E, Grulke E, Abe A, Bloch D (eds) (1999) Polymer handbook, 4th edn. Wiley, New York
Blumberg, Hillermeier, Krüger (1982) Aramid-Prozess. Melliand Textilberichte
Wulfhorst B, Büsgen A (1989) Faserstofftabelle nach P.-A. Koch: Aramidfasern. Chemiefasern/Textilindustrie 39:1263–1270
Wulfhorst B, Gries T, Veit D (2006) Textile technology. Hanser, Munich
MarketsandMarkets (2014). http://www.marketsandmarkets.com/Market-Reports/aramid-fibers-market-112849061.html. Accessed 24 Jun 2015
Dyneema (2015). http://www.dsm.com/products/dyneema/en_GB/home.html. Accessed 04 Aug 2015
Ticona (2001). http://www.hipolymers.com.ar/pdfs/gur/diseno/GUR%20%28PE-UHMW%29.pdf. Accessed 24 Jun 2015
Kauffman GB (1993) Rayon: the first semi-synthetic fiber product. J Chem Educ 70(11):887
Ahmed S, Bukhari IA, Siddiqui JI, Quereshi SA (2006) A study on properties of polypropylene fiber reinforced concrete. Paper presented at the 31st conference on our world in concrete & structures, Singapore, 16–17 Aug 2006
Geary JM, Goodby JW, Kmetz AR, Patel JS (1987) The mechanism of polymer alignment of liquid-crystal materials. J Appl Phys 62:4100
Kravaev P, Stolyarov O, Seide G, Gries T (2013) A method for investigating blending quality of commingled yarns. Text Res J 83:122–129
Choi BD, Diestel O, Offermann P (1999) Commingled carbon/PEEK hybrid yarns for use in textile reinforced high performance rotors. Paper presented at the 12th international conference on composite materials (ICCM), Paris, 5–9 July 1999
Biron M (2007) Thermoplastics and thermoplastic composites. Elsevier, Amsterdam
Tavanaie MA, Shoushtari AM, Goharpey F, Motjahedi MR (2013) Matrix-fibril morphology development of polypropylene/poly(butylenes terephthalate) blend fibers at different zones of melt spinning process and its relation to mechanical properties. Fibers Polym 14(3):396–404
Alcock B, Cabrera NO, Barkoula N-M, Loos J, Peijs T (2006) The mechanical properties of unidirectional all-polypropylene composites. Comp Part A 37:716–726
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer Science+Business Media Singapore
About this chapter
Cite this chapter
Pico, D., Steinmann, W. (2016). Synthetic Fibres for Composite Applications. In: Rana, S., Fangueiro, R. (eds) Fibrous and Textile Materials for Composite Applications. Textile Science and Clothing Technology. Springer, Singapore. https://doi.org/10.1007/978-981-10-0234-2_4
Download citation
DOI: https://doi.org/10.1007/978-981-10-0234-2_4
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-10-0232-8
Online ISBN: 978-981-10-0234-2
eBook Packages: EngineeringEngineering (R0)