Skip to main content

Reinforcements and Composites with Special Properties

  • Chapter
  • First Online:
Fibrous and Textile Materials for Composite Applications

Part of the book series: Textile Science and Clothing Technology ((TSCT))

Abstract

This chapter presents an overview of different types of composite reinforcements (fibres, textiles, nanofibres, nanotubes, particles, etc.) with special properties like piezoresistivity, self-sensing property, self-healing capability, conductivity, electromagnetic shielding, heat generation, and so on. The properties of reinforced polymers and composites have also been discussed in detail. Additionally, fundamental aspects behind these special properties are also presented in this chapter. The last section of this chapter is dedicated to novel multi-scale reinforcements and composite materials, and their properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abbasi AMR, Militky J (2013) EMI shielding effectiveness of polypyrrole coated glass fabric. J Chem Chem Eng 7:256–259

    CAS  Google Scholar 

  2. Abdi MM, Kassim AB, Mahmud H et al (2009) Electromagnetic interference shielding effectiveness of new conducting polymer composite. J Macrom Sci, Part A: Pure Appl Chem 47:71–75

    Article  CAS  Google Scholar 

  3. Abyaneh MK, Ekar S, Kulkarni SK (2012) Piezoresistivity and mechanical behavior of metal-polymer composites under uniaxial pressure. J Mater Sci Res 1:50–58

    CAS  Google Scholar 

  4. Aghaei M, Hanum Y, Thayoob M, et al (2012) A review on the impact of the electromagnetic radiation (EMR) on the human’s health. In: Proceedings National graduate conference (NatGrad2012), Universiti Tenaga Nasional, Putrajaya Campus, 8–10 Nov 2012

    Google Scholar 

  5. Aıssa B, Tagziria K, Haddad E, Jamroz W, Loiseau J, Higgins A (2012) The self healing capability of carbon fibre composite structures subjected to hypervelocity impacts simulating orbital space debris. Int Schol Res Net ISRN Nanomater Article ID 351205:1–16. doi:10.5402/2012/351205

    Google Scholar 

  6. Avloni J, Lau R, Ouyang M, Florio L, Henn AR, Sparavigna A (2008) Polypyrrol e-coated nonwovens for electromagnetic shielding. J Ind Tex 38:55–68

    Article  CAS  Google Scholar 

  7. Avloni J, Ouyang M, Florio L, Henn AR, Sparavigna A (2007) Shielding effectiveness evaluation of metallized and poly pyrrole-coated fabrics. J Therm Comp Mater 20:241–254

    Article  CAS  Google Scholar 

  8. Baeza FJ, Galao O, Zornoza E, Garcés P (2013) Multifunctional cement composites strain and damage sensors applied on reinforced concrete (RC) structural elements. Materials 6:841–855

    Article  Google Scholar 

  9. Ballou JW (1954) Static electricity in textiles, tex. Res J 24:146–155. doi:10.1177/004051755402400209

    Google Scholar 

  10. Baltopoulos A, Athanasopoulos N, Fotiou I, Vavouliotis A, Kostopoulos V (2013) Sensing strain and damage in polyurethane-MWCNT nano-composite foams using electrical measurements. eXPRESS Polym Lett 7:40–54. doi:10.3144/expresspolymlett.2013.4

    Article  Google Scholar 

  11. Bayerl T, Duhovic M, Mitschang P, Bhattacharyya D (2014) The heating of polymer composites by electromagnetic induction—A review. Compos Part A: Appl Sci Manuf 57:27–40. doi:10.1016/j.compositesa.2013.10.024

    Article  CAS  Google Scholar 

  12. Bekyarova E, Thostenson ET, Yu A, Kim H, Gao J, Tang J, Hahn HT, Chou TW, Itkis ME, Haddon RC (2007) Multiscale carbon nanotube-carbon fiber reinforcement for advanced epoxy composites. Langmuir 23(7):3970–3974

    Article  CAS  Google Scholar 

  13. Bertuleit K (1991) Silver coated polyamide: a conductive fabric. J Indus Tex 20:211–215. doi:10.1177/152808379102000307

    Article  CAS  Google Scholar 

  14. Bhattacharyya A, Rana S, Parveen S, Fangueiro R, Alagirusamy R, Joshi M (2013) Mechanical and thermal transmission properties of carbon nanofibre dispersed carbon/phenolic multi-scale composites. J Appl Polym Sci 129:2383–2392

    Article  CAS  Google Scholar 

  15. Bleha M, Kudela V, Rosova E et al (1999) Synthesis and characterization of thin polypyrrole layers on polyethylene microporous films. Eur Polym J 35:613–620

    Article  CAS  Google Scholar 

  16. Boger L, Viets C, Wichmann MHG, Schulte K (2009) Glass fibre reinforced composites with a carbon nanotube modified epoxy matrix as self sensing material. In: Proceedings of the 7th International workshop on structural health monitoring, Stanford, CA, USA, pp 973–978

    Google Scholar 

  17. Boiko YM, Guérin G, Marikhin VA, Prud’homme RE (2001) Healing of interfaces of amorphous and semi-crystalline poly(ethylene terephthalate) in the vicinity of the glass transition temperature. Polymer 42:8695–8702

    Article  CAS  Google Scholar 

  18. Bonaldi RR, Siores E, Shah T (2010) Electromagnetic shielding characterisation of several conductive fabrics for medical applications. J Fiber Bioeng Inf 2:237–245. doi:10.3993/jfbi03201006

    Article  Google Scholar 

  19. Bond IP, Trask RS, Williams HR (2008) self healing fiber-reinforced polymer composites. MRS Bull 33:770–774. doi:10.1557/mrs2008.164

    Article  CAS  Google Scholar 

  20. Boschi A, Arosio C, Cucchi I et al (2008) Properties and performance of polypyrrole (PPy)-coated silk fibers. Fiber Polym 9:698–707

    Article  CAS  Google Scholar 

  21. Boutrois JP, Jolly R, Petrescu C (1997) Process of polypyrrole deposit on textile: product characteristics and applications. Synth Met 85:1405–1406

    Article  CAS  Google Scholar 

  22. Chen HC, Lee KC, Lin JH et al (2007) Comparison of electromagnetic shielding effectiveness properties of diverse conductive textiles via various measurement techniques. J Mater Process Technol 192–193:549–554

    Article  CAS  Google Scholar 

  23. Chen HS, Lee KC, Lin JH, Koch M (2007) Fabrication of conductive woven fabric and analysis of electromagnetic shielding via measurement and empirical equation. J Mater Process Technol 184:124–130

    Article  CAS  Google Scholar 

  24. Chen PW, Chung DDL (1995) Improving the electrical conductivity of composites comprised of short conductive fibres in a non-conducting matrix: the addition of nonconductive particulate filler. J Elecrtochem Mater 24:47–52

    Article  CAS  Google Scholar 

  25. Chen X, Dam MA, Ono K, Mal A, Shen HB, Nutt SR, Sheran K, Wudl F (2002) A thermally re-mendable cross-linked polymeric material. Science 295:1698–1702

    Article  CAS  Google Scholar 

  26. Chen X, Wudl F, Mal AK, Shen H, Nutt SR (2003) New thermally remendable highly cross-linked polymeric materials. Macromolecules 36:1802–1807

    Article  CAS  Google Scholar 

  27. Cheng KB, Lee ML, Ramakrishna S (2001) Electromagnetic shielding effectiveness of stainless steel/polyester woven fabrics. Text Res J 7:42–49. doi:10.1177/004051750107100107

    Google Scholar 

  28. Cheng KB, Ramakrishna S, Lee KC (2000) Electromagnetic shielding effectiveness of copper/glass fiber knitted fabric reinforced polypropylene composites. Compos A 31:1039–1045

    Article  Google Scholar 

  29. Chipara M, Wooley K (2005) Molecular self healing processes in polymers. Mater Res Soc Symp Proc 851:127–132

    CAS  Google Scholar 

  30. Cho H, Tabata I, Hisada K, Hirogaki K, Hori T (2013) Characterization of copper-plated conductive fibers after pretreatment with supercritical carbon dioxide and surface modification using Lyocell fiber. Tex Res J 83:780–793. doi:10.1177/0040517512467130

    Article  CAS  Google Scholar 

  31. Cho JW, Jung H (1997) Electrically conducting high-strength aramid composite fibres prepared by vapour-phase polymerization of pyrrole. J Mater Sci 32:5371–5376

    Article  CAS  Google Scholar 

  32. Cho J, Chen JY, Daniel IM (2007) Mechanical enhancement of carbon fiber/epoxy composites by graphite nanoplatelet reinforcement. Scripta Mater 56(8):685–688

    Article  CAS  Google Scholar 

  33. Chowdhury FH, Hosur MV, Jeelani S (2006) Studies on the flexural and thermomechanical properties of woven carbon/nanoclay-epoxy laminates. Mater Sci Eng, A 421(1–2):298–306

    Article  CAS  Google Scholar 

  34. Chung CM, Roh YS, Cho SY, Kim JG (2004) Crack healing in polymeric materials via photochemical [2 + 2] cycloaddition. Chem Mater 16:3982–3984

    Article  CAS  Google Scholar 

  35. Chung DDL (2002) Electrical conduction behavior of cement–matrix composites. J Mater Eng Perform 11:194–204

    Article  CAS  Google Scholar 

  36. Coates GW, Hustad PD, Reinartz S (2002) Catalysts for the living insertion polymerization of alkenes: access to new polyolefin architectures using Ziegler- Natta chemistry. Ang Chem Int 41:2236–2257

    Article  CAS  Google Scholar 

  37. Cochrane C, Koncar V, Lewandowski M, Dufour C (2007) Design and development of a flexible strain sensor for textile structures based on a conductive polymer composite. Sensors 7:473–492

    Article  CAS  Google Scholar 

  38. Coppola L, Buoso A, Corazza F (2011) Electrical properties of carbon nanotubes cement composites for monitoring stress conditions in cement structure. Appl Mech Mater 82:118–123. doi:10.4028/www.scientific.net/AMM.82.118

    Article  CAS  Google Scholar 

  39. Dall’Acqua L, Tonin C, Varesano A, Canetti M, Porzio W, Catellani M (2006) Vapour phase polymerisation of pyrrole on cellulose-based textile substrates. Synth Met 156:379–386

    Article  CAS  Google Scholar 

  40. De Gennes PG (1971) Reptation of a polymer chain in the presence of fixed obstacles. J Chem Phys 55:572–579

    Article  Google Scholar 

  41. Dharap P, Li Z, Nagarajaiah S, Barrera EV (2004) Nanotube film based on single-wall carbon nanotubes for strain sensing. Nanotechnology 15:379–382

    Article  CAS  Google Scholar 

  42. Dhawan SK, Singh N, Venkatachalam S (2002) Shielding behaviour of conducting polymer-coated fabrics in X-band, W-band and radio frequency range. Synth Met 129:261–267

    Article  CAS  Google Scholar 

  43. Dietzel Y, Przyborowski W, Nocke G et al (2000) Investigation of PVD arc coatings on polyamide fabrics. Surf Coat Technol 135:75–81

    Article  CAS  Google Scholar 

  44. Doi M, Edwards SF (1978) Dynamics of concentrated polymer systems. Faradays Transactions, J Chem Soc

    Google Scholar 

  45. Dry CM (1991) Alteration of matrix permeability and associated pore and crack structure by timed release of internal chemicals. Ceram Trans 16:729–768

    CAS  Google Scholar 

  46. Dry CM (1992) Passive tunable fibers and matrices Int J Mod Phys B 6:2763–2771

    Article  CAS  Google Scholar 

  47. Dry CM (1993) Passive smart materials for sensing and actuation. J Intell Mater Sys Struct 4:420–425

    Article  Google Scholar 

  48. Dry CM (1996) Procedures developed for self-repair of polymer matrix composite materials. Compos Struct 35:263–269

    Article  Google Scholar 

  49. Easter MR (2005) Self healing cables. (Individual U) US: 2005136257-A1

    Google Scholar 

  50. Ehsan MN, Zaman MM, Mahabubuzzaman AKM (2010) enrichment of self healing material and advanced composite structures. J Innov Dev Strategy 4:28–32

    Google Scholar 

  51. Eisenberg A, Rinaudo M (1990) Polyelectrolytes and ionomers. Polym Bull 24:671

    Article  CAS  Google Scholar 

  52. Enrique GJ, Wardle BL, Hart AJ (2008) Joining prepreg composite interfaces with aligned carbon nanotubes. Compos A Appl Sci Manuf 39(6):1065–1070

    Article  CAS  Google Scholar 

  53. ErdoÄŸan MK, KarakiÅŸla M, Saçak M (2012) Preparation, characterization and electromagnetic shielding effectiveness of conductive polythiophene/poly(ethterephthalate) composite fibers. J Macromol Sci Part A Pure Appl Chem 49:473–482

    Article  CAS  Google Scholar 

  54. Esfandiari A (2008) PPy covered cellulosic and protein fibres using novel covering methods to improve the electrical property. World Appl Sci J 3:470–475

    Google Scholar 

  55. Fawad I, Wong DWY, Kuwata M, Peijs T (2010) Multiscale hybrid micro-nanocomposites based on carbon nanotubes and carbon fibers. J Nanomater 2010:12

    Google Scholar 

  56. Fink BK, McCullough RL, Gillespie WJ (1992) A local theory of heating in cross-ply carbon fiber thermoplastic composites by magnetic induction. Polym Eng Sci 32:357–369. doi:10.1002/pen.760320509

    Article  CAS  Google Scholar 

  57. Fischer H (2010) Self-repairing material systems-a dream or a reality? Nat Sci 2:873–901. doi:10.4236/ns.2010.28110

    CAS  Google Scholar 

  58. Florio L, Sparavigna A (2004) Textiles for electromagnetic shielding, International Conference on Condensed Matter Physics, Genova, Abstract book, p 193

    Google Scholar 

  59. Gandhi OP (2002) Electromagnetic fields: human safety issues. Annu Rev Biomed Eng 4:211–234

    Article  CAS  Google Scholar 

  60. Garcia EJ, Wardle BL, Hart AJ, Yamamoto N (2008) Fabrication and multifunctional properties of a hybrid laminate with aligned carbon nanotubes grown in situ. Compos Sci Technol 68(9):2034–2041

    Article  CAS  Google Scholar 

  61. Ghorbel I, Akele N, Thominette F, Spiteri P, Verdu J (1995) Hydrolytic aging of polycarbonate. II. Hydrolysis kinetics, effect of static stresses. J Appl Polym Sci 55:173–179

    Article  CAS  Google Scholar 

  62. Godara A, Mezzo L, Luizi F, Warrier A, Lomov SV, Van Vuure AW, Gorbatikh L, Moldenaers P, Verpoest I (2009) Influence of carbon nanotube reinforcement on the processing and the mechanical behaviour of carbon fiber/epoxy composites. Carbon 47(12):2914–2923

    Article  CAS  Google Scholar 

  63. Goethals EJ, Du Prez F (2007) Carbocationic polymerizations. Prog Polym Sci 32:220–246

    Article  CAS  Google Scholar 

  64. Gojny FH, Wichmann MHG, Fiedler B, Bauhofer W, Schulte K (2005) Influence of nano-modification on the mechanical and electrical properties of conventional fibre-reinforced composites. Compos Part A 36(11):1525–1535

    Article  CAS  Google Scholar 

  65. Gupta N, Sharma S, Mir IA, Kumar D (2006) Advances in sensors based on conductive polymers. J Sci Ind Res 65:549–557

    CAS  Google Scholar 

  66. HĂ¥kansson E, Amiet A, Kaynak A (2006) Electromagnetic shielding properties of polypyrrole/polyester composites in the 1–18 GHz frequency range. Synth Met 156:917–925

    Article  CAS  Google Scholar 

  67. HĂ¥kansson E, Amiet A, Nahavandi S, Kaynak A (2007) Electromagnetic interference shielding and radiation absorption in thin polypyrrole films. Europ Polym J 43(1):205–213

    Article  CAS  Google Scholar 

  68. Hakansson E, Kaynak A, Lin T et al (2004) Characterization of conducting polymer coated synthetic fabrics for heat generation. Synth Met 144:21

    Article  CAS  Google Scholar 

  69. Hamdani STA, Potluri P, Fernando A (2013) Thermo-mechanical behavior of textile heating fabric based on silver coated polymeric yarn. Materials 6:1072–1089. doi:10.3390/ma6031072

    Article  Google Scholar 

  70. Han EG, Kim EA, Oh KW (2001) Electromagnetic interference shielding effectiveness of elecroless Cu-plated PET fabric. Synth Met 123:469–476

    Article  CAS  Google Scholar 

  71. Harreld JH, Wong MS, Hansma PK, Morse DE, Stucky GD (2004) self healing organosiloxane materials containing reversable and energy-dispersive crosslinking domains. (University of California U) US patent: 2004007792-A1

    Google Scholar 

  72. Harris KM, Rajagopalan M (2003) Self healing polymers in sports equipment. (Acushnet Company U) US:2003032758-A1

    Google Scholar 

  73. Hasegawa M, Katsumata T, Ito Y, Saigo K, Iitaka Y (1988) Topochemical photoreactions of unsymmetrically substituted diolefins. 2. Photopolymerization of 4-(Alkoxycarbonyl)-2,5-distyrylpyrazines. Macromolecules 21:3134–3138

    Article  CAS  Google Scholar 

  74. Homma D, Mihashi H, Nishiwaki T (2009) Self healing capability of fibre reinforced cementitious composites. J Adv Conc Tech 7:217–228

    Article  CAS  Google Scholar 

  75. Hong YK, Lee CY, Jeong CK et al (2001) Electromagnetic interference shielding characteristics of fabric complexes coated with conductive polypyrrole and thermally evaporated Ag. Curr Appl Phys 1:439–442

    Article  Google Scholar 

  76. Hou C, Huang T, Wang H, Yu H, Zhang Q, Li Y (2013) A strong and stretchable self healing film with self-activated pressure sensitivity for potential artificial skin applications. Sci Rep 3:3138–3144. doi:10.1038/srep03138

    Google Scholar 

  77. Hussain M, Nakahira A, Niihara K (1996) Mechanical property improvement of carbon fiber reinforced epoxy composites by Al2O3 filler dispersion. Mater Lett 26(3):185–191

    Article  CAS  Google Scholar 

  78. Ichkitidze L, Podgaetsky V, Selishchev S, Blagov E, Galperin V, Shaman Y, Pavlov A, Kitsyuk E (2013) Electrically-conductive composite nanomaterial with multi-walled carbon nanotubes. Mater Sci Appl 4:1–7

    CAS  Google Scholar 

  79. Imaizumi K, Ohba T, Ikeda Y, Takeda K (2001) Self-repairing mechanism of polymer composite. Mater Sci Res Int (Japan) 7:249–253

    CAS  Google Scholar 

  80. Jiang Z, Imam A, Crane R, Lozano K, Khabashesku VN, Barrera EV (2007) Processing a glass fiber reinforced vinyl ester composite with nanotube enhancement of interlaminar shear strength. Compos Sci Technol 67(7–8):1509–1517

    Google Scholar 

  81. Johnson O, Gardner C, Seegmiller D, Mara N et al (2011) Multiscale model for the extreme piezoresistivity in silicone/nickel nanostrand nanocomposites. Metall Mater Trans A 42(13):3898–3906

    Article  CAS  Google Scholar 

  82. Johnson OK, Gardner CJ, Fullwood DT, Adams BL, Hansen G, Hansen N (2010) The colossal piezoresistive effect in nickel nanostrand polymer composites and a quantum tunneling model. Comput Mater Continua 15(2):24

    Google Scholar 

  83. Johnson TM, Fullwood DT, Hansen G (2013) Strain monitoring of carbon fiber composite via embedded nickel nano-particles. Compos B Eng 43:1155–1163

    Article  CAS  Google Scholar 

  84. Jones F, Hayes SA (2005) self healing composite material. (University of Sheffeld G) WO:2005066244-A2

    Google Scholar 

  85. Jud K, Kausch HH (1979) Load transfer through chain molecules after interpenetration at interfaces. Polym Bull 1:697–707

    Article  CAS  Google Scholar 

  86. Jud K, Kausch HH, Williams JG (1981) Fracture-mechanics studies of crack healing and welding of polymers. J Mater Sci 16:204–210

    Article  CAS  Google Scholar 

  87. Kalantari M, Dargahi J, Kövecses J, Ghanbari M, Nouri S (2012) A new approach for modeling piezoresistive force sensors based on semiconductive polymer composites. IEEE/ASME Trans Mechatron 17(3):572–581

    Article  Google Scholar 

  88. Kalista SJ, Ward TC (2007) Thermal characteristics of the self healing response in poly(ethylene-co-methacrylic acid) copolymers. R Soc Interface 4:405–411

    Article  CAS  Google Scholar 

  89. Kalista SJ, Ward TC, Oyetunji Z (2007) Self-healing of poly (ethylene-comethacrylic acid) opolymers following projectile puncture. Mech Adv Mater Struct 14:391–397

    Article  CAS  Google Scholar 

  90. Katunin AW, Kostka Hufenbach P, Holeczek K (2010) Frequency dependence of the self-heating effect in polymer-based composites. J Achieve Mater Manuf Eng 41:9–15

    Google Scholar 

  91. Kausch HH, Jud K (1982) Molecular aspects of crack formation and healing in glassy polymers. Rubber Process Appl 2:265–268

    CAS  Google Scholar 

  92. Kaynak A, Foitzik R (2011) Methods of coating textiles with soluble conducting polymers. Res J Tex Appar 15:107–113

    CAS  Google Scholar 

  93. Kaynak A, Najar SS, Foitzik RC (2008) Conducting nylon, cotton and wool yarns by continuous vapor polymerization of pyrrole. Synth Met 158:1–5

    Article  CAS  Google Scholar 

  94. Kaynak A, HĂ¥kansson E (2005) Generating heat from conducting polypyrrole-coated PET fabrics. Adv PolymTechnol 24:194–207

    CAS  Google Scholar 

  95. Khan S, Kim JK (2011) Impact and delamination failure of multiscale carbon nanotube-fiber reinforced polymer composites: a review. Int J Space Sci 12(2):115–133

    Google Scholar 

  96. Kim HK, Byun SW, Jeong SH, Lee et al (2002) Environmental Staility of EMI Shielding PET FabricPolypyrrole Composite. Mol Cryst Liq Cryst 377:369–372

    Article  CAS  Google Scholar 

  97. Kim HK, Kim MS, Chun SY, Park YH, Jeon BS, Lee JY, Hong YK, Joo J, Kim SH (2003) Characteristics of electrically conducting polymer-coated textiles. Mol Cryst Liq Cryst 405(1):161–169

    Article  CAS  Google Scholar 

  98. Kim J, Sohn D, Sung Y, Kim E (2003) Fabrication and characterization of conductive polypyrrole thin film prepared by in situ vapor phase polymerization. Synth Met 132:309–313

    Article  CAS  Google Scholar 

  99. Kim KH, Kim MS, Song K et al (2003) EMI shielding intrinsically conductive polymer/PET textile composites. Synth Met 135:105–106. doi:10.1016/S0379-6779(02)00876-7

    Article  CAS  Google Scholar 

  100. Kim MS, Kim HK, Byun SW et al (2002) PET fabric/polypyrrole composite with high electrical conductivity for EMI shielding. Synth Met 126:233–239

    Article  CAS  Google Scholar 

  101. Kim SH, Jang SH, Byun SW, Lee JY, Joo JS, Jeong SH, Park MJ (2003) Electrical properties and EMI shielding characteristics of polypyrrole-nylon 6 composite fabrics. J Appl Polym Sci 87:1969–1974. doi:10.1002/app.11566

    Article  CAS  Google Scholar 

  102. Kim YH, Wool RP (1983) A theory of healing at a polymer-polymer interface. Macromolecules 16:1115–1120

    Article  CAS  Google Scholar 

  103. Kim MT, Rhee KY, Park SJ, Hui D (2012) Effects of silane-modified carbon nanotubes on flexural and fracture behaviors of carbon nanotube-modified epoxy/basalt composites. Compos B Eng 43(5):2298–2302

    Article  CAS  Google Scholar 

  104. Kim MT, Rhee KY (2011) Flexural behavior of carbon nanotube-modified epoxy/basalt composites. Carbon Lett 12(3):177–179

    Article  Google Scholar 

  105. King RWP (2000) Electrical currents and fields induced in cells in the human brain by radiation from hand-held cellular telephones. J Appl Phys 87:893–900

    Article  CAS  Google Scholar 

  106. Knittel D, Schollmeyer E (2009) electrically high-conductive textiles. Synth Met 159:1433–1437. doi:10.1016/j.synthmet.2009.03.021

    Article  CAS  Google Scholar 

  107. Koecher MC, Pande JH, Merkley S, Henderson S, Fullwood DT, Bowden AE (2015) Piezoresistive in-situ strain sensing of composite laminate structures. Compos Part B 69:534–541. doi:10.1016/j.compositesb.2014.09.029

    Article  CAS  Google Scholar 

  108. Koprowska J, Pietranik M, Stawski W (2004) New type of textiles with shielding properties. Fiber Tex Eastern Eur 12(3):47

    Google Scholar 

  109. Kuhn HH, Child AD, Kimbrell WC (1995) Toward real applications of conductive polymers. Synth Met 71:2139–2142

    Article  CAS  Google Scholar 

  110. Kumar A, Stephenson LD (2006) Self healing coatings using microcapsules. (Individual U) US: 2006042504-A1

    Google Scholar 

  111. Kumar MN, Thilagavathi G (2012) Surface resistivity and EMI shielding effectiveness of polyaniline coated polyester fabric. J Tex Appar Tech Manag 7:1–6

    Google Scholar 

  112. Lak A (2012) Human health effects from radiofrequency and microwave fields. J Basic Appl Sci Res 2:12302–12305

    Google Scholar 

  113. Lakshmi K, John H, Mathew KT et al (2009) Microwave absorption, reflection and EMI shielding of PU–PANI composite. Acta Mater 57:371–375

    Article  CAS  Google Scholar 

  114. Lao LL, Ramanujan RV (2004) Magnetic and hydrogel composite materials for hypothermia application. J Mater Sci: Mater Med 15:1061–1064

    CAS  Google Scholar 

  115. Lee CY, Lee DE, Jeong CK et al (2002) Electromagnetic interference shielding by using conductive polypyrrole and metal compound coated fabrics. Polym Adv Technol 13:577–583. doi:10.1002/pat.227

    Article  CAS  Google Scholar 

  116. Lee CY, Lee J, Joo MS, Kim JY et al (2001) Conductivity and EMI shielding of polypyrrole and metal compounds coated on nonwoven fabrics. Synth Met 119:429–430

    Article  CAS  Google Scholar 

  117. Lee JY (2003) Polypyrrole-coated woven fabric as a flexible surface-heating element. Macromol Res 11:481–487

    Article  CAS  Google Scholar 

  118. LePing L, Wei Z, Yi X, HongMei W, Yang Z, WuJun L (2011) Preparation and characterization of microcapsule containing epoxy resin and its self-healing performance of anticorrosion covering material. Chinese Sci Bull 56:439–443. doi:10.1007/s11434-010-4133-0

    Article  CAS  Google Scholar 

  119. Levin ZS, Robert C, Feller JF, Castro M, Grunlan JC (2013) Flexible latex—polyaniline segregated network composite coating capable of measuring large strain on epoxy. Smart Mater Struct 22:015008–015009. doi:10.1088/0964-1726/22/1/015008

    Article  CAS  Google Scholar 

  120. Lin CB, Lee SB, Liu KS (1990) Methanol-induced crack healing in poly(methyl methacrylate). Polym Eng Sci 30:1399–1406

    Article  CAS  Google Scholar 

  121. Lin VWJ, Lia M, Lynch JP, Li VC (2011) Mechanical and electrical characterization of self-sensing carbon black ECC. Proc SPIE 7983:1–12. doi:10.1117/12.880178

    Google Scholar 

  122. Loh KJ, Lynch JP, Kotov NA (2008) Inductively coupled nanocomposite wireless strain and pH sensors. Smart Struct Syst 4:531–548

    Article  Google Scholar 

  123. Macasaquit AC, Binag CA (2010) Preparation of conducting polyester textile by in situ polymerization of pyrrole. Philippine J Sci 139:189–196

    Google Scholar 

  124. Mahajan A, Singh M (2012) Human health and electromagnetic radiations. Inter J Eng Innov Technol 1:95–97

    Google Scholar 

  125. Maity S, Chatterjee A (2013) Preparation and characterization of electro-conductive rotor yarn by in situ chemical polymerization of pyrrole. Fibre Polym 14(8):1407–1413. doi:10.1007/s12221-013-1407-6

    Article  CAS  Google Scholar 

  126. Maity S, Chatterjee A, Singh B, Singh AP (2014) Polypyrrole based elelctro-conductive textiles for heat generation. J Tex Inst 105(8):887–893. doi:10.1080/00405000.2013.861149

    Article  CAS  Google Scholar 

  127. Maity S, Singha K, Debnath P, Singha M (2013) Textiles in electromagnetic Radiation Protection. J Safety Eng 2:11–19. doi:10.5923/j.safety.20130202.01

    Google Scholar 

  128. Malhotra U, Maity S, Chatterjee A (2015) Polypyrrole-silk electro-conductive composite fabric by in situ chemical polymerization. J Appl Polym Sci 132(4):41336. doi:10.1002/app.41336

    Article  CAS  Google Scholar 

  129. McNeill IC, Rincon A (1993) Thermal-degradation of polycarbonates—reaction conditions and reaction-mechanisms. Polym Degrad Stabil 39:13–19

    Article  CAS  Google Scholar 

  130. Mistik SI, Sancak E, Usta IE et al (2012) Investigation of electromagnetic shielding properties of boron and carbon fibre woven fabrics and their polymer composites, In: RMUTP International conference: textiles & fashion, Bangkok, Thailand, 3–4 July 2012

    Google Scholar 

  131. Miyasaka K (1986) Mechanism of electrical conduction in electrically-conductive filler-polymer composites. Int Polym Sci Technol 13:41–48

    Google Scholar 

  132. Muthukumar N, Thilagavathi G (2012) Development and characterization of electrically conductive polyaniline coated fabrics. Indian J Chem Technol 19:423–441

    Google Scholar 

  133. Najar SS, Kaynak A, Foitzik RC (2007) Conductive wool yarns by continuous vapour phase polymerization of pyrrole. Synth Met 157:1–4

    Article  CAS  Google Scholar 

  134. Nauman S, Cristian I, Koncar V (2011) Simultaneous application of fibrous piezoresistive sensors for compression and traction detection in glass laminate composites. Sensors 11:9478–9498. doi:10.3390/s111009478

    Article  Google Scholar 

  135. Negru D, Buda CT, Avram D (2012) Electrical conductivity of woven fabrics coated with carbon black particles. Fiber Tex Eastern Eur 20:53–56

    CAS  Google Scholar 

  136. Paczkowski J (1996) Polymeric Materials Encyclopedia. In: Salamone JC. Boca Raton, FL:CRC Press, p. 5142

    Google Scholar 

  137. Palamutcu S, Ă–zek A, Karpuz C, DaÄŸ N (2010) Electrically conductive textile surfaces and their electromagnetic shielding efficiency measurement. Tekstil Ve Konfeksiyon 3:199–207

    Google Scholar 

  138. Pang JWC, Bond IP (2005) A hollow fibre reinforced polymer composite encompassing self-healing and enhanced damage visibility. Compos Sci Technol 65:1791–1799. doi:10.1016/j.compscitech.2005.03.008

    Article  CAS  Google Scholar 

  139. Parveen S, Rana S, Fangueiro R (2013) A review on nanomaterial dispersion, microstructure and mechanical properties of carbon nanotube and nanofiber based cement composites. J Nanomater 2013(2013):1–19

    Article  CAS  Google Scholar 

  140. Patel AJ, Sottos NR, Wetzel ED, White SR (2010) Autonomic healing of low-velocity impact damage in fiber-reinforced composites. Compos A 41:360–368. doi:10.1016/j.compositesa.2009.11.002

    Article  CAS  Google Scholar 

  141. Patil A, Deogaonkar S (2012) A novel method of in situ chemical polymerization of polyaniline for synthesis of electrically conductive cotton fabrics. Tex Res J 82:1517–1530

    Article  CAS  Google Scholar 

  142. Patil SJ, Duragkar N, Rao VR (2014) An ultra-sensitive piezoresistive polymer nano-composite microcantilever sensor electronic nose platform for explosivevapor detection. Sens Actuators B 192:444–451. doi:10.1016/j.snb.2013.10.111

    Article  CAS  Google Scholar 

  143. Perumalraj R, Dasaradan BS (2011) Ellectroless nikel plated composite textile material for electromagnet compatibility. Indian J Fibre Text Res 36:35–41

    CAS  Google Scholar 

  144. Perumalraj R, Nalankilli G, Balasaravanan TR et al (2010) Electromagnetic shielding tester for conductive textile materials. Indian J Fibre Tex Res 35:361–365

    CAS  Google Scholar 

  145. Pingkarawat K, Bhat T, Craze DA, Wang CH, Varley RJ (2013) Mouritz A P (2013) Healing of carbon fibre–epoxy composites using thermoplastic additives. Polym Chem 4:5007–5015. doi:10.1039/C3PY00459G

    Article  CAS  Google Scholar 

  146. Pomposo JA, Rodrıguez J, Grande H (1999) Polypyrrole-based conducting hot melt adhesives for EMI shielding applications. Synth Met 104:107–111

    Article  CAS  Google Scholar 

  147. Power EJ, Dias T (2003) Knitting of Electroconductive Yarns. In: Eurowearable, 2003 The Institution of Electrical Engineers. Birmingham, UK, 4–5 Sept 2003, pp 55–60. doi:10.1049/ic:20030147

  148. Prager S, Tirrell M (1981) The healing process at polymer-polymer interfaces. J Chem Phys 75:5194–5198

    Article  CAS  Google Scholar 

  149. Pryde CA, Hellman MY (1980) Solid state hydrolysis of bisphenol-A polycarbonate I. Effect of phenolic end groups 1980. J Appl Polym Sci 25:2573–2587

    Article  CAS  Google Scholar 

  150. Qiao Y, Shen L, Dou Y (2010) Polymerization and characterization of high conductivity and good adhesion polypyrrole films for electromagnetic interference shielding. Chin J Polym Sci 28:923–930

    Article  CAS  Google Scholar 

  151. Qiu J, Zhang C, Wang B, Liang R (2007) Carbon nanotube integrated multifunctional multiscale composites. Nanotechnology 18(27):5708

    Article  CAS  Google Scholar 

  152. Raghavan A, Kessler SS, Dunn CT, Barber D, Wicks S, Wardle BL (2009) Structural health monitoring using carbon nanotube (CNT) enhanced composites. In: Proceedings of the 7th International workshop on structural health monitoring, Stanford, CA, USA, pp 1034–1041

    Google Scholar 

  153. Rainieri C, Fabbrocino G, Song Y, Shanov V (2011) CNT composites for shm: a literature review. In: International workshop smart materials, structures & NDT in aerospace, Quebec, Canada, 2–4 Nov 2011

    Google Scholar 

  154. Rana S, Zdraveva E, Rosado K, Patinha S, Cunha F, Fangueiro R (2012) strain and damage sensing behaviour of core reinforced braided composite rods. In: ECCM15—15th European conference on composite materials, Venice, Italy, 24–28 June 2012

    Google Scholar 

  155. Rana S, Alagirusamy R, Joshi M (2011) Single-walled carbon nanotube incorporated novel three phase carbon/epoxy composite with enhanced properties. J Nanosci Nanotechnol 11(8):7033–7036

    Article  CAS  Google Scholar 

  156. Rana S, Alagirusamy R, Joshi M (2009) A review on carbon epoxy nanocomposites. J Reinf Plastics Compos 28:461–487

    Article  CAS  Google Scholar 

  157. Rana S, Alagirusamy R, Joshi M (2010) Mechanical properties of epoxy reinforced with homogeneously dispersed carbon nanofibre. Int J Plastics Technol 14(2):224–233

    Article  CAS  Google Scholar 

  158. Rana S, Alagirusamy R, Joshi M (2011) Development of carbon nanofibre incorporated three phase carbon/epoxy composites with enhanced mechanical, electrical and thermal properties. Compos A Appl Sci Manuf 42(5):439–445

    Article  CAS  Google Scholar 

  159. Rana S, Alagirusamy R, Joshi M (2011) Effect of carbon nanofibre dispersion on the tensile properties of epoxy nanocomposites. J Compos Mater 45(21):2247–2256

    Article  CAS  Google Scholar 

  160. Rana S, Alagirusamy R, Joshi M (2012) Carbon nanomaterial based three phase multi-functional composites. Lap Lambert Academic Publishing Gmbh & Co, KG, Germany

    Google Scholar 

  161. Rana Sohel, Bhattacharyya Amitava, Parveen Shama, Fangueiro Raul, Alagirusamy Ramasamy, Joshi Mangala (2013) Processing and performance of carbon/epoxy multi-scale composites containing carbon nanofibres and single walled carbon nanotubes. J Polym Res 20(12):1–11

    Article  CAS  Google Scholar 

  162. Ranade R, Zhang J, Lynch JP, Li VC (2014) Influence of micro-cracking on the composite resistivity of engineered cementitious composites. Cement Conc Res 58:1–12

    Article  CAS  Google Scholar 

  163. Rodriguez J, Otero TF, Grande H, Moliton JP, Moliton A, Trigaud T (1996) Optimization of the electrical conductivity of polypyrrole films electrogenerated on aluminium electrodes. Synth Met 76(1–3):301–303

    Article  CAS  Google Scholar 

  164. Roh JS, Chi YS, Kang TJ, Nam SW (2008) Electromagnetic shielding effectiveness of multifunctional metal composite fabrics. Tex Res J 78:825–835

    Article  CAS  Google Scholar 

  165. Rui M, Marco S, Renato G, Gerardo R, Miguel NJ, Helder C, Pedro S, Senentxu LM (2014) Processing and electrical response of fully polymer piezoelectric filaments for e-textiles applications. J Text Eng 60(2):27–34

    Article  Google Scholar 

  166. Sanders ML, Rowlands SF, Coombs PG (1998) Self healing UV barrier coating for flexible polymer substrate. (Optical Coating Laboratory Inc U) US: 5790304

    Google Scholar 

  167. Schnabel W, Kiwi J (1978) Photodegradation. Jellinek HHG. Degradation and stablization of polymers. Elsevier Science, Amsterdam, pp 195–246

    Google Scholar 

  168. Schwarz A, Kazani I, Cuny L et al (2011) Comparative study on the mechanical properties of elastic, electro-conductive hybrid yarns & their input materials. Tex Res J 81:1713–1724. doi:10.1177/0040517511410109

    Article  CAS  Google Scholar 

  169. Schwarz A, Kazani I, Cuny L et al (2011) Electro-conductive & elastic hybrid yarns—the effects of stretching, cyclic straining & washing on their electro-conductive properties. Mater Des 32:4247–4256. doi:10.1016/j.matdes.2011.04.021

    Article  CAS  Google Scholar 

  170. Seena V, Fernandes A, Pant P, Mukherji S, Rao VR (2011) Polymer nanocomposite nanomechanical cantilever sensors: material characterization, device development and application in explosive vapour detection. Nanotechnology 22:295501–295511. doi:10.1088/0957-4484/22/29/295501

    Article  CAS  Google Scholar 

  171. Seshadri DT Bhat NV (2005) Synthesis & properties of cotton fabrics modifies with polypyrrole. BTRA SCAN, 1–8 Dec 2005

    Google Scholar 

  172. Sharma K, Shukla M (2014) Three-phase carbon fiber amine functionalized carbon nanotubes epoxy composite: processing, characterisation, and multiscale modeling. J Nanomater 2014(2014):1–10

    Google Scholar 

  173. Simon RM, Stutz D (1983) Test methods for shielding materials. EMC Technol 2:39–48

    Google Scholar 

  174. Singh AK (2013) Carbon nanotube based nanocomposite for electromagnetic absorption and dymnamic structural strain sensing. Indian J Pure Appl Phys 51:439–443

    CAS  Google Scholar 

  175. Soyaslan D, Çomlekçi S, Göktepe O (2010) Determination of electromagnetic shielding performance of plain knitting and 1X 1rib structures with coaxial test fixture relating to ASTMD 4935. J Tex Inst 101:890–897

    Article  CAS  Google Scholar 

  176. Sparavigna AC, Florio L, Avloni J et al (2010) Polypyrrole coated PET fabrics for thermal applications. Mater Sci Appl 1:253–259. doi:10.4236/msa.2010.14037

    CAS  Google Scholar 

  177. Stampfer C, Helbling T, Obergfell D, Schöberle B, Tripp MK, Jungen A, Roth S, Bright VM, Hierold C (2006) Fabrication of single-walled carbon-nanotube-based pressure sensors. Nano Lett 6:233–237

    Article  CAS  Google Scholar 

  178. Stankute R, Grinrvicicteiūte D, Gutauskas M et al (2010) Evaluation of electrostatic properties of fiber-forming polymers. Mater Sci (MEDŽIAGOTYRA) 16:72–75

    Google Scholar 

  179. Sundaresan VB, Morgan A, Castellucci M (2013) Self-healing of ionomeric polymers with carbon fibers from medium-velocity impact and resistive heating. Smart Mater Res Article ID 271546:12

    Google Scholar 

  180. Sunny WS, Villoria RG, Wardle BL (2010) Interlaminar and intralaminar reinforcement of composite laminates with aligned carbon nanotubes. Compos Sci Technol 70(1):20–28

    Article  CAS  Google Scholar 

  181. Szwarc M (1956) Living polymers. Nature 178:1168–1169

    Article  CAS  Google Scholar 

  182. Takeda K, Tanahashi M, Unno H (2003) Self-repairing mechanism of plastics. Sci Technol Adv Mater 4:435–444

    Article  CAS  Google Scholar 

  183. Takeda K, Unno H, Zhang M (2004) Polymer reaction in polycarbonate with Na2CO3. J Appl Polym Sci 93:920–926

    Article  CAS  Google Scholar 

  184. Tan KS, Hinberg I, Wadhwani J (2001) Electromagnetic interference in medical devices: health Canada’s past and current perspectives and activities. IEEE Int Symp Electr Comp 2:1283–1288

    Google Scholar 

  185. Tanaka H, Tsunawaki K (1981) Electrically conductive fiber and method for producing the same. Patent US4267233A, USA

    Google Scholar 

  186. Todoroki A (2010) Self-sensing composites and optimization of composite structures in Japan. Int J Aeronaut Space Sci 11(3):155–166. doi:10.5139/IJASS.2010.11.3.155

    Google Scholar 

  187. Todoroki A, Haruyama D, Mizutani Y, Suzuki Y, Yasuoka T (2014) Electrical resistance change of carbon/epoxy composite laminates under cyclic loading under damage initiation limit. Open J Compos Mater 4:22–31. doi:10.4236/ojcm.2014.41003

    Article  CAS  Google Scholar 

  188. Trask RS, Bond IP (2006) Biomimetic self-healing of advanced composite structures using hollow glass fibres. Smart Mater Struct 15:704–710

    Article  CAS  Google Scholar 

  189. Trifigny N, Kelly FM, Cochrane C, Boussu F, Koncar V, Soulat D (2013) PEDOT:PSS-based piezo-resistive sensors applied to reinforcement glass fibres for in situ measurement during the composite material weaving process. Sensors 13:10749–10764. doi:10.3390/s130810749

    Article  CAS  Google Scholar 

  190. Trung VO, Tung DN, Huyen GN (2009) Polypyrrole/Al2O3 nanocomposites: preparation, characyerization and electromagnetic shielding properties. J Experiment Nanosci 4:213–219. doi:10.1080/174580809031

    Article  CAS  Google Scholar 

  191. Tyagi S, Lee JY, Buxton GA, Balazs AC (2004) Using nanocomposite coatings to heal surface defects. Macromolecules 37:9160–9168

    Article  CAS  Google Scholar 

  192. Varghese S, Lele A, Mashelkar R (2006) Metal-ion-mediated healing of gels. J Polym Sci Part A-Polym Chem 44:666–670

    Article  CAS  Google Scholar 

  193. Varghese S, Lele AK, Srinivas D, Mashelkar RA (2001) Role of hydrophobicity on structure of polymer-metal complexes. J Phys Chem B 105:5368–5373

    Article  CAS  Google Scholar 

  194. Varnaite S (2010) The use of conductive yarns in woven fabric for protection against electrostatic field. Mater Sci (Medžiagotyra) 16:133–137

    Google Scholar 

  195. Veedu VP, Cao A, Li X, Ma K, Soldano C, Kar S, Ajayan PM, Nejhad MNG (2006) Multifunctional composites using reinforced laminate with carbon-nanotube forests. Nat Mater 5(6):457–462

    Article  CAS  Google Scholar 

  196. Volodina AA, Belmesova AA, Murzina VB, Fursikova PV, Zolotarenkob AD, Tarasova BP (2013) Electroconductive composites based on titania and carbon nanotubes. Neorganic Mater 49:702–708

    Google Scholar 

  197. Wang JP, Xue P, Tao XM (2011) Strain sensing behavior of electrically conductive fibers under large deformation. Mater Sci Eng A 528:2863–2869. doi:10.1016/j.msea.2010.12.057

    Article  CAS  Google Scholar 

  198. Wang Y, Xu Z, Chen L, Jiao Y, Wu X (2011) Multi-scale hybrid composites-based carbon nanotubes. Polym Compos 32(2):159–167

    Article  CAS  Google Scholar 

  199. Wen S, Chung DDL (2001) Uniaxial compression in carbon fiber-reinforced cement, sensed by electrical resistivity measurement in longitudinal and transverse directions. Cement Concr Res 31:297–301

    Article  CAS  Google Scholar 

  200. White SR, Sottos NR, Geubelle PH, Moore JS, Kessler MR, Sriram SR, Brown EN, Viswanathan S (2001) Autonomic healing of polymer composites. Nature 409:794–797

    Article  CAS  Google Scholar 

  201. Wool RP, O’Connor KM (1981) A theory of crack healing in polymers. J Appl Phys 52:5953–5963

    Article  CAS  Google Scholar 

  202. Wu DY, Meure S, Solomon D (2008) Self-healing polymeric materials: a review of recent developments. Prog Polym Sci doi:10.1016/j.progpolymsci.2008.02.001

    Google Scholar 

  203. Wu XF, Yarin AL (2013) Recent progress in interfacial toughening and damage self-healing of polymer composites based on electrospun and solution-blown nanofibers: an overview. doi:10.1002/app.39282

    Google Scholar 

  204. Wudl F, Chen X (2004) Thermally re-mendable cross-linked polymers. US:2004014933-A1. University of California

    Google Scholar 

  205. Xue P, Tao XM, Kwok K, Leung MY (2004) Electromechanical behavior of fibers coated with an electrically conductive polymer. Tex Res J 74:929–936

    Article  CAS  Google Scholar 

  206. Yamaguchi M, Ono S, Terano M (2007) Self-repairing property of polymer network with dangling chains. Mater Lett 61:1396–1399

    Article  CAS  Google Scholar 

  207. Yang F, Pitchumani R (2002) Healing of thermoplastic polymers at an interface under nonisothermal conditions. Macromolecules 35:3213–3224

    Article  CAS  Google Scholar 

  208. Yavuz O, Ram MK, Aldissi M et al (2005) Polypyrrole composites for shielding applications. Synth Met 151:211–217

    Article  CAS  Google Scholar 

  209. Yildiz Z, Usta I, Gungor A (2012) Electrical properties and electromagnetic shielding effectiveness of polyester yarns with polypyrrole deposition. Tex Res J 82:2137–2148

    Article  CAS  Google Scholar 

  210. Yildiz Z, Usta I, Gungor A (2013) Investigation of the electrical properties and electromagnetic shielding effectiveness of polypyrrole coated cotton yarns. Fibre Tex Eastern Eur 98:32–37

    Google Scholar 

  211. Yuan YC, Yin T, Rong MZ, Zhang MQ (2008) Self healing in polymers and polymer composites. Concepts, realization and outlook: a review. eXPRESS Polym Let 2:238–250. doi:10.3144/expresspolymlett.2008.29

    Article  CAS  Google Scholar 

  212. Zako M, Takano N (1999) Intelligent material systems using epoxy particles to repair microcracks and delamination damage in GFRP. J Intell Mater Sys Struct 10:836–841

    Article  Google Scholar 

  213. Zhang H, Tao X, Wang S, Yu T (2005) Electro-mechanical properties of knitted fabric made from conductive multi-filament yarn under unidirectional extension. Tex Res J 75:598–606. doi:10.1177/0040517505056870

    Article  CAS  Google Scholar 

  214. Zhao DL, Zhang HL, Zeng XW, Xia QS, Tang JT (2006) Inductive heat property of Fe3O4/polymer composite nanoparticles in an ac magnetic field for localized hyperthermia. Biomed Mater 1:198–201. doi:10.1088/1748-6041/1/4/004

    Article  CAS  Google Scholar 

  215. Zhu X, Li X, Sun B (2012) Study on electromagnetic shielding efficacy of knitting clothing. Przeglad Elektrotechniczny (Electr Rev) 88:42–43

    Google Scholar 

  216. Zhu YF, Zhang L, Natsuki T et al (2012) Synthesis of hollow poly(aniline-co-pyrrole)–Fe3O4composite nanospheres and their microwave absorption behavior. Synth Met 162:337–343

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arobindo Chatterjee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Chatterjee, A., Maity, S., Rana, S., Fangueiro, R. (2016). Reinforcements and Composites with Special Properties. In: Rana, S., Fangueiro, R. (eds) Fibrous and Textile Materials for Composite Applications. Textile Science and Clothing Technology. Springer, Singapore. https://doi.org/10.1007/978-981-10-0234-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-0234-2_10

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-0232-8

  • Online ISBN: 978-981-10-0234-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics