Abstract
Investigating the living brain, and in particular relating its activity to behavior is one of the most important challenges in neuroscience. Researchers use many different techniques to explore this relationship. Careful observation of patients with brain lesions or neuroimaging methods such as functional magnetic resonance imaging (fMRI), electroencephalography (EEG), or near infra-red spectroscopy (NIRS) are examples of procedures which allow researchers to make inferences about brain activity in a non-invasive way.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Adolphs R, Gosselin F, Buchanan TW, Tranel D, Schyns P, Damasio AR (2005) A mechanism for impaired fear recognition after amygdala damage. Nature 433:68â72
Adolphs R, Kawasaki H, Tudusciuc O, Howard MA, Heller AC, Sutherling WW, Philpott L, Ross IB, Mamelak AN, Rutishauser U (2014) Electrophysiological responses to faces in the human amygdala. In: Fried I, Rutishauser U, Cref U, Kreiman G (eds) Single neuron studies of the human brain. MIT Press, Boston, pp 229â247
Adolphs R, Tranel D, Damasio H, Damasio A (1994) Impaired recognition of emotion in facial expressions following bilateral damage to the human amygdala. Nature 372:669â672
Barlow HB (2009) Single units and sensation: a neuron doctrine for perceptual psychology? Perception 38:371â394
Bettus G, Ranjeva JP, Wendling F, BĂ©nar CG, Confort-Gouny S, RĂ©gis J, Chauvel P, Cozzone PJ, Lemieux L, Bartolomei F, Guye M (2011) Interictal functional connectivity of human epileptic networks assessed by intracerebral EEG and BOLD signal fluctuations. PLoS ONE 6:e20071
Biederman I, Bederman I (1987) Recognition-by-components: a theory of human image understanding. Psychol Rev 94:115â147
Cerf M, Thiruvengadam N, Mormann F, Kraskov A, Quiroga RQ, Koch C, Fried I (2010) On-line, voluntary control of human temporal lobe neurons. Nature 467:1104â1108
Decharms R, Zador A (2000) Neural representation and the cortical code. Annu Rev Neurosci:613â647
Ekman P, Friesen WV (1976) Pictures of Facial Affect. Consulting Psychologists Press, Palo Alto, CA
Engel J, Kuhl DE, Phelps ME, Mazziotta JC (1982) Interictal cerebral glucose metabolism in partial epilepsy and its relation to EEG changes. Ann Neurol 12:510â517
Fried I, MacDonald KA, Wilson CL (1997) Single neuron activity in human hippocampus and amygdala during recognition of faces and objects. Neuron 18:753â765
Gelbard-Sagiv H, Mukamel R, Harel M, Malach R, Fried I (2008) Internally generated reactivation of single neurons in human hippocampus during free recall. Science 322:96â101
Grill-Spector K, Malach R (2004) The human visual cortex. Annu Rev Neurosci 27:649â677
Gross CG (1994) How inferior temporal cortex became a visual area. Cereb Cortex 4:455â469
Gross CG (2002) Genealogy of the âgrandmother cellâ. Neuroscientist 8:512â518
Hanes DP, Thompson KG, Schall JD (1995) Relationship of presaccadic activity in frontal eye field and supplementary eye field to saccade initiation in macaque: Poisson spike train analysis. Exp Brain Res 103:85â96
Harding AJ, Halliday GM, Kril JJ (1998) Variation in hippocampal neuron number with age and brain volume 8:710â718
Henze DA, Borhegyi Z, Csicsvari J, Mamiya A, Harris KD, BuzsĂĄki G (2000) Intracellular features predicted by extracellular recordings in the hippocampus in vivo. J Neurophysiol 84:390â400
Hubel D, Wiesel T (1962) Receptive fields, binocular interaction and functional architecture in the catâs visual cortex. J Physiol:106â154
Ison M, Quiroga R (2008) Selectivity and invariance for visual object perception. Front Biosci:4889â4903
Ison MJ, Mormann F, Cerf M, Koch C, Fried I, Quiroga RQ (2011) Selectivity of pyramidal cells and interneurons in the human medial temporal lobe. J Neurophysiol 106:1713â1721
Kawasaki H, Adolphs R, Oya H, Kovach C, Damasio H, Kaufman O, Howard M (2005) Analysis of single-unit responses to emotional scenes in human ventromedial prefrontal cortex. J Cogn Neurosci 17:1509â1518
Kim S-G, Ogawa S (2012) Biophysical and physiological origins of blood oxygenation level-dependent fMRI signals. J Cereb Blood Flow Metab 32:1188â1206
Konorski J (1967) Integrative activity of the brain; an interdisciplinary approach. Chicago University, Chicago
Kreiman G, Fried I, Koch C (2002) Single-neuron correlates of subjective vision in the human medial temporal lobe. Proc Natl Acad Sci USA 99:8378â8383
Kreiman G, Hung CP, Kraskov A, Quiroga RQ, Poggio T, DiCarlo JJ (2006) Object selectivity of local field potentials and spikes in the macaque inferior temporal cortex. Neuron 49:433â445
Kreiman G, Koch C, Fried I (2000a) Category-specific visual responses of single neurons in the human medial temporal lobe. Nat Neurosci 3:946â953
Kreiman G, Koch C, Fried I (2000b) Imagery neurons in the human brain. Nature 408:357â361
Leonard CM, Rolls ET, Wilson FAW, Baylis GC (1985) Neurons in the amygdala of the monkey with responses selective for faces. Behav Brain Res 15:159â176
Lisman JE, Otmakhova NA (2001) Storage, recall, and novelty detection of sequences by the hippocampus: Elaborating on the SOCRATIC model to account for normal and aberrant effects of dopamine. Hippocampus 11:551â568
Logothetis NK, Pauls J, Augath M, Trinath T, Oeltermann A (2001) Neurophysiological investigation of the basis of the fMRI signal. Nature 412:150â157
Logothetis NK, Sheinberg DL (1996) Visual object recognition. Annu Rev Neurosci 19:577â621
Logothetis NK, Wandell BA (2004) Interpreting the BOLD signal. Annu Rev Physiol 66:735â769
Milner B, Corkin S, Teuber H-L (1968) Further analysis of the hippocampal amnesic syndrome: 14-year follow-up study of H.M. Neuropsychologia 6:215â234
Miyashita Y, Rolls ET, Cahusac PM, Niki H, Feigenbaum JD (1989) Activity of hippocampal formation neurons in the monkey related to a conditional spatial response task. J Neurophysiol 61:669â678
Mormann F, Dubois J, Kornblith S, Milosavljevic M, Cerf M, Ison M, Tsuchiya N, Kraskov A, Quiroga RQ, Adolphs R, Fried I, Koch C (2011) A category-specific response to animals in the right human amygdala. Nat Neurosci 14:1247â1249
Mormann F, Kornblith S, Quiroga RQ, Kraskov A, Cerf M, Fried I, Koch C (2008) Latency and selectivity of single neurons indicate hierarchical processing in the human medial temporal lobe. J Neurosci 28:8865â8872
Mosher CP, Zimmerman PE, Gothard KM (2014) Neurons in the monkey amygdala detect eye contact during naturalistic social interactions. Curr Biol 24:2459â2464
Mukamel R, Ekstrom AD, Kaplan J, Iacoboni M, Fried I (2010) Single-neuron responses in humans during execution and observation of actions. Curr Biol 20:750â756
OâKeefe J, Nadel L (1978) The hippocampus as a cognitive map. Oxford University Press
Olshausen BA, Field DJ (2004) Sparse coding of sensory inputs. Curr Opin Neurobiol 14:481â487
Quian Quiroga R (2012) Concept cells: the building blocks of declarative memory functions. Nat Rev Neurosci 13:587â597
Quian Quiroga R (2013) Gnostic cells in the 21st century. Acta Neurobiol Exp (Wars) 73:463â471
Quian Quiroga R, Kraskov A, Koch C, Fried I (2009) Explicit encoding of multimodal percepts by single neurons in the human brain. Curr Biol 19:1308â1313
Quian Quiroga R, Kreiman G, Koch C, Fried I (2008) Sparse but not âgrandmother-cellâ coding in the medial temporal lobe. Trends Cogn Sci 12:87â91
Quian Quiroga R, Reddy L, Koch C, Fried I (2007) Decoding visual inputs from multiple neurons in the human temporal lobe. J Neurophysiol 98:1997â2007
Quian Quiroga R, Reddy L, Kreiman G, Koch C, Fried I (2005) Invariant visual representation by single neurons in the human brain. Nature 435:1102â1107
Quian Quiroga R, Kraskov A, Mormann F, Fried I, Koch C (2014) Single-cell responses to face adaptation in the human medial temporal lobe. Neuron 84:363â369
Rutishauser U, Mamelak AN, Schuman EM (2006) Single-trial learning of novel stimuli by individual neurons of the human hippocampus-amygdala complex. Neuron 49:805â813
Rutishauser U, Ross IB, Mamelak AN, Schuman EM (2010) Human memory strength is predicted by theta-frequency phase-locking of single neurons. Nature 464:903â907
Rutishauser U, Schuman EM, Mamelak A (2014) Single neuron correlates of declarative memory formation and retrieval in the human medial temporal lobe. In: Fried I, Rutishauser U, Cref U, Kreiman G (eds) Single neuron studies of the human brain. MIT Press, Boston
Rutishauser U, Schuman EM, Mamelak AN (2008) Activity of human hippocampal and amygdala neurons during retrieval of declarative memories. Proc Natl Acad Sci USA 105:329â334
Rutishauser U, Ye S, Koroma M, Tudusciuc O, Ross IB, Chung JM, Mamelak AN (2015) Representation of retrieval confidence by single neurons in the human medial temporal lobe. Nat Neurosci 18:1â12
Schumann CM, Hamstra J, Goodlin-Jones BL, Lotspeich LJ, Kwon H, Buonocore MH, Lammers CR, Reiss AL, Amaral DG (2004) The amygdala is enlarged in children but not adolescents with autism; the hippocampus is enlarged at all ages. J Neurosci 24:6392â6401
Scoville WB, Milner B (1957) Loss of recent memory after bilateral hippocampal lesions. J Neurol Neurosurg Psychiatry 20:11â21
Sheinberg DL, Logothetis NK (1997) The role of temporal cortical areas in perceptual organization. Proc Natl Acad Sci USA 94:3408â3413
Shou T, Ruan D, Zhou Y (1986) The orientation bias of LGN neurons shows topographic relation to area centralis in the cat retina. Exp Brain Res 64:233â236
Simons DJ, Woolsey TA (1979) Functional organization in mouse barrel cortex. Brain Res 165:327â332
Squire LR, Stark CEL, Clark RE (2004) The medial temporal lobe. Annu Rev Neurosci 27:279â306
Sugase Y, Yamane S, Ueno S, Kawano K (1999) Global and fine information coded by single neurons in the temporal visual cortex. Nature 400:869â873
Suzuki WA (1996) Neuroanatomy of the monkey entorhinal, perirhinal and parahippocampal cortices: organization of cortical inputs and interconnections with amygdala and striatum. Semin Neurosci 8:3â12
Suzuki WA, Amaral DG (1994) Perirhinal and parahippocampal cortices of the macaque monkey: cortical afferents. J Comp Neurol 350:497â533
Talavage TM, Ledden PJ, Benson RR, Rosen BR, Melcher JR (2000) Frequency-dependent responses exhibited by multiple regions in human auditory cortex. Hear Res 150:225â244
Tanaka K (1996) Inferotemporal cortex and object vision. Annu Rev Neurosci 19:109â139
Tranel D, Hyman BT (1990) Neuropsychological correlates of bilateral amygdala damage. Arch Neurol 47:349â355
Tsao DY, Schweers N, Moeller S, Freiwald WA (2008) Patches of face-selective cortex in the macaque frontal lobe. Nat Neurosci 11:877â879
Viskontas IV, Quiroga RQ, Fried I (2009) Human medial temporal lobe neurons respond preferentially to personally relevant images. Proc Natl Acad Sci USA 106:21329â21334
Wang S, Tudusciuc O, Mamelak AN, Ross IB, Adolphs R, Rutishauser U (2014) Neurons in the human amygdala selective for perceived emotion. Proc Natl Acad Sci USA 111:E3110âE3119
Waydo S, Kraskov A, Quian Quiroga R, Fried I, Koch C (2006) Sparse representation in the human medial temporal lobe. J Neurosci 26:10232â10234
Wolfe JM (1984) Reversing ocular dominance and suppression in a single flash. Vision Res 24:471â478
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer Science+Business Media Singapore
About this chapter
Cite this chapter
KamiĆski, J., Rutishauser, U. (2017). Insights on Vision Derived from Studying Human Single Neurons. In: Zhao, Q. (eds) Computational and Cognitive Neuroscience of Vision. Cognitive Science and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-10-0213-7_2
Download citation
DOI: https://doi.org/10.1007/978-981-10-0213-7_2
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-10-0211-3
Online ISBN: 978-981-10-0213-7
eBook Packages: EngineeringEngineering (R0)