Advertisement

Top-down and/or Bottom-up Causality: The Notion of Relatedness in the Human Brain

  • Kim C. Wende
  • Andreas Jansen
Conference paper
Part of the Advances in Cognitive Neurodynamics book series (ICCN)

Abstract

There is an unsettled debate in neuroscience on the question of neural processes underlying impressions of causality. Some favor perceptual (bottom-up), others cognitive/inferential (top-down) approaches. We here try to disentangle and apply new definitions to the functional categories “cognition” and “perception,” based on anatomically distinct neural processing systems in the human brain. Especially, the perceptual domain is not well defined, because it spans across “sensory”/morphological domains (non-lateralized) to “higher perceptual” domains (crossing of hemispheres in the visual cortex and correspondingly in the visual domain). Top-down influences very likely occur at different stages of neural information processing. Corresponding mental functions (sensing, perceiving, interpreting) might be integrated into one type of event during meaningful (meta-)cognition with extreme ends of the information dimension (0/1, causal/noncausal, or even/odd). We suggest that top-down “causation” and bottom-up “agency” are complimentary processes interacting across functional modalities and thereby forming one “unit” of explicit conscious experience/one “momentum” (Michotte in The perception of causality. Basic Books, Oxford, 1963 [1]; Kant in Kritik der reinen Vernunft. Suhrkamp Verlag, Frankfurt am Main, 1781 [2]).

Keywords

Causality Perception Cognition Consciousness Brain–mind problem Human Language 

References

  1. 1.
    Michotte, A.: The Perception of Causality. Basic Books, Oxford (1963)Google Scholar
  2. 2.
    Kant, I.: Kritik der reinen Vernunft (1781). In: von Weischedel, W. (ed.), Suhrkamp Verlag, Frankfurt am Main (1974)Google Scholar
  3. 3.
    Schlottmann, A., Shanks, D.R.: Evidence for a distinction between judged and perceived causality. Q. J. Exp. Psychol. A 44, 321–342 (1992)PubMedCrossRefGoogle Scholar
  4. 4.
    Badler, J.B., Lefevre, P., Missal, M.: Divergence between oculomotor and perceptual causality. J. Vis. 3, 1–15 (2012)Google Scholar
  5. 5.
    Badler, J.B., Lefevre, P., Missal, M.: Causality attribution biases oculomotor responses. J. Neurosci. 31, 517–525 (2010)Google Scholar
  6. 6.
    Blakemore, S.J., et al.: The detection of contingency and animacy from simple animations in the human brain. Cereb. Cortex 13, 837–844 (2003)PubMedCrossRefGoogle Scholar
  7. 7.
    Adams, R.A., Shipp, S., Friston, K.J.: Predictions not commands: active inference in the motor system. Brain Struct Funct 218, 611–643 (2013)PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Roser, M.E., et al.: Dissociating processes supporting causal perception and causal inference in the brain. Neuropsychology, 591–602 (2005)Google Scholar
  9. 9.
    Fonlupt, P.: Perception and judgement of physical causality involve different brain structures. Brain Res. Cogn. Brain Res. 17, 248–254 (2003)PubMedCrossRefGoogle Scholar
  10. 10.
    Gobbini, M.I., et al.: Distinct neural systems involved in agency and animacy detection. J. Cogn. Neurosci. 23(8), 1911–1920 (2011)PubMedCrossRefGoogle Scholar
  11. 11.
    Young, M.E., Rogers, E.T., Beckmann, J.S.: Causal impressions: predicting when, not just whether. Mem Cogn 33, 320–331 (2005)CrossRefGoogle Scholar
  12. 12.
    Straube, B., Chatterjee, A.: Space and time in perceptual causality. Front Hum Neurosci 4, 28 (2010)PubMedPubMedCentralGoogle Scholar
  13. 13.
    Wende, K.C., Straube, B., Stratmann, M., Sommer, J., Kircher, T., Nagels, A.: Neural correlates of continuous causal word generation. Neuroimage 62, 1399–1407 (2012)PubMedCrossRefGoogle Scholar
  14. 14.
    White, P.A.: The causal asymmetry. Psychol. Rev. 113, 132–147 (2006)Google Scholar
  15. 15.
    Choi, H., Scholl, B.J.: Measuring causal perception: connections to representational momentum? Acta Psychol. 123, 91–111 (2006)CrossRefGoogle Scholar
  16. 16.
    Sartenaer, O.: Neither metaphysical dichotomy nor pure identity. Clarifying the emergentist creed. Stud. Hist. Philos. Biol. Biomed. Sci. 44(365), 373 (2013)Google Scholar
  17. 17.
    Acheson, D.J., Hamidi, M., Binder, J.R., Postle, B.R.: A common neural substrate for language production and verbal working memory. J. Cogn. Neurosci. 23, 1358–1367 (2011)PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Crow, T.J.: Schizophrenia as the price that Homo sapiens pays for language: a resolution of the central paradox in the origin of the species. Brain Res. Rev. 4, 118–129 (2000)CrossRefGoogle Scholar
  19. 19.
    Crow, T.J.: The ʻbig bang’ theory of the origin of psychosis and the faculty of language. Schizophr. Res. 102, 31–52 (2008)PubMedCrossRefGoogle Scholar
  20. 20.
    Fletcher, P.C., Frith, C.D.: Perceiving is believing: a Bayesian approach to explaining the positive symptoms of schizophrenia. Nat. Rev. Neurosci. 10, 48–58 (2009)PubMedCrossRefGoogle Scholar
  21. 21.
    Adams, R.A., Perrinet, L.U., Friston, K.: Smooth pursuit and visual occlusion: active inference and oculomotor control in schizophrenia. PLoS One, United States, p. e47502 (2012)Google Scholar
  22. 22.
    Sterzer, P., Kleinschmidt, A.: A neural basis for inference in perceptual ambiguity. Proc. Natl. Acad. Sci. USA 104(1), 323–328 (2007)PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Piaget, J.: The Child’s Conception of Physical Causality. Harcourt, Brace, New York (1930)Google Scholar
  24. 24.
    Freeman, W.J.: Consciousness, intentionality, and causality. J. Conscious. Stud. 6, 143–172 (1999)Google Scholar
  25. 25.
    Freeman, W.J.: Mass Action in the Nervous System. Academic press, New York (1975). san 28Google Scholar
  26. 26.
    Wende, K.C., Nagels, A., Blos, J., Stratmann, M., Chatterjee, A., Kircher, T., Straube, B.: Differences and communalities in the judgment of causality in a physical and social context: an fMRI study. Neuropsychologia 51, 2572–2580 (2013)PubMedCrossRefGoogle Scholar
  27. 27.
    Jansen, A., Foel, A., Van Randenborgh, J., Konrad, C., Rotte, M., Forster, A.F., Deppe, M., Knecht, S.: Crossed cerebro-cerebellar language dominance. Hum. Brain Mapp. 24, 165–172 (2005)PubMedCrossRefGoogle Scholar
  28. 28.
    Singer, T., Critchley, H.D., Preuschoff, K.: A common role of insula in feelings, empathy and uncertainty. Trends Cogn. Sci. 8, 334–340 (2009)CrossRefGoogle Scholar
  29. 29.
    Craig, A.D.: How do you feel–now? The anterior insula and human awareness. Nat. Rev. Neurosci. 10, 59–70 (2009)PubMedCrossRefGoogle Scholar
  30. 30.
    MacDonald, J.F., Jackson, M.F., Beazely, M.A.: Hippocampal long-term synaptic plasticity and signal amplification of NMDA receptors. Crit. Rev. Neurobiol. 18(1–2), 71–84 (2006)PubMedCrossRefGoogle Scholar
  31. 31.
    Trehub, A.: Space, self, and the theater of consciousness. Conscious. Cogn, 310–330 (2007)Google Scholar
  32. 32.
    Blos, J., et al.: Neural correlates of causality judgment in physical and social context-the reversed effects of space and time. Neuroimage, 882–893 (2012)Google Scholar
  33. 33.
    Binder, J.R., Desai, R.H., Graves, W.W., Conant, L.L.: Where is the semantic system? A critical review and meta-analysis of 120 functional neuroimaging studies. Cereb. Cortex, United States, 2767–2796 (2009)Google Scholar
  34. 34.
    Friston, K., Schwartenbeck, P., FitzGerald, T., Moutoussis, M., Behrens, T., Dolan, R.J.: The anatomy of choice: dopamine and decision-making. Phil. Trans. R. Soc. B 369, 20130481 (2014). doi: 10.1098/rstb.2013.0481 PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Singapore 2016

Authors and Affiliations

  1. 1.Institute of Neurosciences IoNs, Groupe COSYUniversité catholique de Louvain UCLBrusselsBelgium
  2. 2.Department of Brain-imaging, Clinic for Psychiatry and PsychotherapyPhilipps-University MarburgMarburgGermany

Personalised recommendations