Advertisement

Biosurfactant Producing Bacteria from Hydrocarbon Contaminated Environment

  • Sam Joy
  • Tanvi Butalia
  • Shashi SharmaEmail author
  • Pattanathu K. S. M. Rahman
Chapter
Part of the Environmental Footprints and Eco-design of Products and Processes book series (EFEPP)

Abstract

As a result of global industrialization and increasing population there has been an alarming increase in the global demands for energy which is being fulfilled by exploiting various natural resources significantly hydrocarbons. As a result enormous amounts of hydrocarbons and hydrocarbon-based products have been released into the environment, threatening health and sustainability of the ecosystem. These different types of hydrocarbon-contaminated environments vary in their microbial composition and serve as an excellent reservoir of microbial flora, with a potential to degrade hydrocarbons and produce biosurfactants. In this chapter, an overview of biosurfactant-producing microorganisms from hydrocarbon-contaminated environments and their role in utilisation and degradation of hydrocarbon compounds is presented. Micro-organisms growing in hydrocarbon-rich environments undergo many adaptations, such as production of biosurfactants, which increases access to these hydrophobic substrates. Industrially, biosurfactants, which constitute as a group of surface-active amphiphilic compounds, are of great significance as they are biodegradable and nontoxic compared to synthetic chemical surfactants. Thus, biosurfactants have found wide applications and are used in bioremediation, oil exploration and enhanced recovery, health care, oil and food processing industries.

Keywords

Biosurfactant Hydrocarbon Microbial diversity Production Applications of biosurfactant 

References

  1. Abbasi H, Hamedi MM, Lotfabad TB, Zahiri HS, Sharafi H, Masoomi F, Moosavi-Movahedi AA, Ortiz A, Amanlou M, Noghabi KA (2012) Biosurfactant producing bacterium, Pseudomonas aeruginosa MA01 isolated from spoiled apples: physicochemical and structural characteristics of isolated biosurfactant. J Biosci Bioeng 113(2):211–219CrossRefGoogle Scholar
  2. Abdel-Mawgoud AM, Aboulwafa MM, Hassouna NAH (2008) Optimization of surfactin production by Bacillus subtilis isolate BS5. Appl Biochem Biotechnol 150(3):305–325CrossRefGoogle Scholar
  3. Abdel-Mawgoud AM, Lepine F, Deziel E (2010) Rhamnolipids: diversity of structures, microbial origins and roles. Appl Microbiol Biotechnol 86(5):1323–1336CrossRefGoogle Scholar
  4. Abouseoud M, Maachi R, Amrane B, Nabi A (2008) Evaluation of different carbon and nitrogen sources in production of biosurfactant by Pseudomonas fluorescens. Desalination 223(1–3):143–151CrossRefGoogle Scholar
  5. Adams RH, Castillo-Acosta O, Escalante-Espinosa E, Zavala-Cruz J (2011) Natural attenuation and phytoremediation of petroleum hydrocarbon impacted soil in tropical wetland environments. In: Torres LG, Bandala ER (eds) Remediation of soils and aquifers. Nova Publishers, New York, pp 1–24Google Scholar
  6. Affandi IE, Suratman NH, Abdullah S, Ahmad WA, Zakaria ZA (2014) Degradation of oil and grease from high-strength industrial effluents using locally isolated aerobic biosurfactant-producing bacteria. Int Biodeterior Biodegradation. doi: 10.1016/j.ibiod.2014.04.009 Google Scholar
  7. Al-Wahaibi Y, Joshi S, Al-Bahry S, Elshafie A, Al-Bemani A, Shibulal B (2014) Biosurfactant production by Bacillus subtilis B30 and its application in enhancing oil recovery. Colloids Surf B Biointerfaces 114:324–333CrossRefGoogle Scholar
  8. Amani H (2015) Study of enhanced oil recovery by rhamnolipids in a homogeneous 2D micromodel. J Pet Sci Eng 128:212–219CrossRefGoogle Scholar
  9. Amezcua-Vega C, Ferrera-Cerrato R, Esparza-Garcia F, Rios-Leal E, Rodriguez-Vazquez R (2004) Effect of combined nutrients on biosurfactant produced by Pseudomonas putida. J Environ Sci Health A Tox Hazard Subst Environ Eng. 39(11–12):2983–2991CrossRefGoogle Scholar
  10. Amin GA (2014) Exponential fed-batch strategy for enhancing biosurfactant production by Bacillus subtilis. Water Sci Technol 70(2):234–240CrossRefGoogle Scholar
  11. Ammami MT, Portet-Koltalo B, Duclairoir-Poc W, LeDerf F (2015) Application of biosurfactants and periodic voltage gradient for enhanced electrokinetic remediation of metals and PAHs in dregraded marine sediments. Chemosphere 125:1–8CrossRefGoogle Scholar
  12. Ansaldi M, Marolt D, Stebe T, Mandic-Mulec I, Dubnau D (2002) Specific activation of the Bacillus quorum sensing systems by isoprenylated pheromone variants. Mol Microbiol 44:1561–1573CrossRefGoogle Scholar
  13. Aparna A, Srinikethan G, Smitha H (2011) Effect of Addition of Biosurfactant Produced by Pseudomonas sp. on biodegradation of crude oil. In: Second international conference on environmental science and technology, vol 6, IPCBEE Singapore, IACSIT PressGoogle Scholar
  14. Assadi M, Rostamza M, Noohi AS, Levin M, Shahamati M (2004) Rhamnolipid production by Pseudomonas aerogiosa MM1011 from sugar beet molasses. Asian J Microbiol Biotech Environ Sci 6(2):203–207Google Scholar
  15. Atkinson S, Williams P (2009) Quorum sensing and social networking in the microbial world. J R Soc Int 6(40):959–978CrossRefGoogle Scholar
  16. Ayed HB, Jemil N, Maalej H, Bayoudh A, Hmidet N, Nasri M (2015) Enhancement of solubilization and biodegradation of diesel oil by biosurfactant from Bacillus amyloliquefaciens An6. Int Biodeterior Biodegradation 99:8–14CrossRefGoogle Scholar
  17. Babu PS, Vaidya AN, Bal AS, Kapur R, Juwarkar A, Khanna P (1996) Kinetics of biosurfactant production by Pseudomonas aeruginosa strain BS2 from industrial wastes. Biotech Lett 18:263–268Google Scholar
  18. Bacon SK, Palmer TM, Grossman AD (2002) Characterization of comQ and comX, two genes required for production of ComX pheromone in Bacillus subtilis. J Bacteriol 184:410–419CrossRefGoogle Scholar
  19. Bak F, Bonnichsen L, Jorgensen NO, Nicolaisen MH, Nybroe O (2015) The biosurfactant viscosin transiently stimulates n-hexadecane mineralization by a bacterial consortium. Appl Microbiol Biotechnol 99(3):1475–1483CrossRefGoogle Scholar
  20. Banat IM, De Rienzo MA, Quinn GA (2014a) Microbial biofilms: biosurfactants as antibiofilm agents. Appl Microbiol Biotechnol 98(24):9915–9929CrossRefGoogle Scholar
  21. Banat IM, Makkar SR, Cameotra SS (2000) Potential commercial application of microbial surfactants. Appl Microbiol Biotechnol 53(5):495–508CrossRefGoogle Scholar
  22. Banat IM, Satpute SK, Cameotra SS, Patil R, Nyayanit NV (2014b) Cost effective technologies and renewable substrates for biosurfactants’ production. Front Microbiol 5:697. doi: 10.3389/fmicb.2014.00697 CrossRefGoogle Scholar
  23. Bao M, Pi Y, Wang L, Sun P, Li Y, Cao L (2014) Lipopeptide biosurfactant production bacteria Acinetobacter sp. D3-2 and its biodegradation of crude oil. Environ Sci Process Impacts 16(4):897–903CrossRefGoogle Scholar
  24. Barros FF, Ponezi AN, Pastore GM (2008) Production of biosurfactant by Bacillus subtilis LB5a on a pilot scale using cassava wastewater as substrate. J Ind Microbiol Biotechnol 35(9):1071–1078CrossRefGoogle Scholar
  25. Bento MF, Camargo FA, Okeke BC, FrankenbergerJr WT (2005) Diversity of biosurfactant producing microorganisms isolated from soils contaminated with diesel oil. Microbiol Res 160(3):249–255CrossRefGoogle Scholar
  26. Bhadoriya SS, Madoriya N, Shukla K, Parihar MS (2013) Biosurfactants: a new pharmaceutical additive for solubility enhancement and pharmaceutical development. Biochem Pharmacol. doi: 10.4172/2167-0501.1000113 Google Scholar
  27. Bharali P, Konwar BK (2011) Production and physico-chemical characterization of a biosurfactant produced by Pseudomonas aeruginosa OBP1 isolated from petroleum sludge. Appl Biochem Biotechnol 164(8):1444–1460CrossRefGoogle Scholar
  28. Bodour AA, Drees KP, Maier RM (2003) Distribution of biosurfactant producing bacteria in undisturbed and contaminated arid southwestern soils. Appl Environ Microbiol 69(6):3280–3287CrossRefGoogle Scholar
  29. Bordoloi NK, Konwar BK (2008) Microbial surfactant-enhanced mineral oil recovery under laboratory conditions. Colloids Surf B Biointerfaces 63:73–82CrossRefGoogle Scholar
  30. Bordoloi NK, Konwar BK (2009) Bacterial biosurfactant in enhancing solubility and metabolism of petroleum hydrocarbons. J Hazard Mater 170(1):495–505CrossRefGoogle Scholar
  31. Burgos-Diaz C, Pons R, Espuny MJ, Aranda FJ, Teruel JA, Manresa A, Ortiz A, Marques AM (2011) Isolation and partial characterization of a biosurfactant mixture produced by Sphingobacterium sp. isolated from soil. J Colloid Interface Sci 361(1):195–204CrossRefGoogle Scholar
  32. Cai Q, Zhang B, Chen B, Zhu Z, Lin W, Cao T (2014) Screening of biosurfactant producers from petroleum hydrocarbon contaminated sources in cold marine environments. Mar Pollut Bull 86(1–2):402–410CrossRefGoogle Scholar
  33. Cameotra SS, Makkar RS (2010) Biosurfactant-enhanced bioremediation of hydrophobic pollutants. Pure Appl Chem 82(1):97–116CrossRefGoogle Scholar
  34. Campos JM, Stamford TL, Sarubbo LA, DeLuna JM, Rufino RD, Banat IM (2013) Microbial biosurfactants as additives for food industries. Biotechnol Prog 29(5):1097–1108CrossRefGoogle Scholar
  35. Campos JM, Stamford TL, Sarubbo LA (2014) Production of a bioemulsifier with potential application in the food industry. Appl Biochem Biotechnol 172(6):3234–3252CrossRefGoogle Scholar
  36. Cao B, Nagarajan K, Loh KC (2009) Biodegradation of aromatic compounds: current status and opportunities for biomolecular approaches. Appl Microbiol Biotechnol 85(2):207–228CrossRefGoogle Scholar
  37. Cerqueira VS, Hollenbach EB, Maboni F, Camargo FA, Peralba Mdo C, Bento FM (2011) Bio-prospection and selection of bacteria isolated from environments contaminated with petrochemical residues for application in bioremediation. World J Microbiol Biotechnol 28(3):1203–1222CrossRefGoogle Scholar
  38. Cha M, Lee N, Kim M, Kim M, Lee S (2008) Heterologous production of Pseudomonas aeruginosa EMS1 biosurfactant in Pseudomonas putida. Bioresour Technol 99(7):2192–2199CrossRefGoogle Scholar
  39. Chandankere R, Yao J, Cai M, Masakorala K, Jain AK, Choi MMF (2014) Properties and characterization of biosurfactant in crude oil biodegradation by bacterium Bacillus methylotrophicus USTBa. Fuel 122:140–148CrossRefGoogle Scholar
  40. Chandankere R, Yao J, Choi MMF, Masakorala K, Chan Y (2013) An efficient biosurfactant-producing and crude-oil emulsifying bacterium Bacillus methylotrophicus USTBa isolated from petroleum reservoir. Biochem Eng J 74:46–53CrossRefGoogle Scholar
  41. Chang JS, Cha DK, Radosevich M, Jin Y (2015) Effects of biosurfactant-producing bacteria on biodegradation and transport of phenanthrene in subsurface soil. J Environ Sci Health A Tox Hazard Subst Environ Eng 50(6):611–616Google Scholar
  42. Chang JS, Chou CL, Lin GH, Sheu SY, Chen WM (2005) Pseudoxanthomonas kaohsiungensis, sp. nov, a novel bacterium isolated from oil-polluted site produces extracellular surface activity. Syst Appl Microbiol 28(2):137–144CrossRefGoogle Scholar
  43. Chayabutra C, Wu J, Ju LK (2001) Rhamnolipid production by Pseudomonas aeruginosa under denitrification: effects of limiting nutrients and carbon substrates. Biotechnol Bioeng 72(1):25–33CrossRefGoogle Scholar
  44. Chen SY, Lu WB, Wei YH, Chen WM, Chang JS (2007) Improved production of biosurfactant with newly isolated Pseudomonas aeruginosa S2. Biotechnol Prog 23:661–666CrossRefGoogle Scholar
  45. Chen YC, Chiang TJ, Liang TW, Wang IL, Wang SL (2012) Reclamation of squid pen by Bacillus licheniformis TKU004 for the production of thermally stable and antimicrobial biosurfactant. Biocatal Agric Biotechnol 1(1):62–69Google Scholar
  46. Cheng KY, Zhao ZY, Wong JW (2004) Solubilization and desorption of PAHs in soil-aqueous system by biosurfactants produced from Pseudomonas aeruginosa P-CG3 under thermophilic condition. Environ Technol 25(10):1159–1165CrossRefGoogle Scholar
  47. Chooklin CS, Maneerat S, Saimmai A (2014) Utilization of banana peel as a novel substrate for biosurfactant production by Halobacteriaceae archaeon AS65. Appl Biochem Biotechnol 173(2):624–645CrossRefGoogle Scholar
  48. Christofi N, Ivshina IB (2002) Microbial surfactants and their use in field studies of soil remediation. J Appl Microbiol 93(6):915–929CrossRefGoogle Scholar
  49. Christova N, Tuleva B, Kril A, Georgieva M, Konstantinov S, Terziyski I, Nikolova B, Stoineva I (2013) Chemical structure and in vitro antitumor activity of rhamnolipids from Pseudomonas aeruginosa BN10. Appl Biochem Biotechnol 170(3):676–689CrossRefGoogle Scholar
  50. Chtioui O, Dimitrov K, Gancel F, Nikov I (2010) Biosurfactants production by immobilized cells of Bacillus subtilis ATCC 21332 and their recovery by pertraction. Process Biochem 45(11):1795–1799CrossRefGoogle Scholar
  51. Colak AK, Kahraman H (2013) The use of raw cheese whey and olive oil mill wastewater for rhamnolipid production by recombinant Pseudomonas aeruginosa. Environ Exp Biol 11:125–130Google Scholar
  52. Comella N, Grossman AD (2005) Conservation of genes and processes controlled by the quorum response in bacteria: characterization of genes controlled by the quorum-sensing transcription factor ComA in Bacillus subtilis. Mol Microbiol 57(4):1159–1174CrossRefGoogle Scholar
  53. Das K, Mukherjee AK (2007) Crude petroleum oil biodegradation efficiency of Bacillus subtilis and Pseudomonas aeruginosa strains isolated from a petroleum-oil contaminated soil from North East India. Bioresour Technol 98(7):1339–1345CrossRefGoogle Scholar
  54. Das N, Chandran P (2011) Microbial degradation of petroleum hydrocarbon contaminants: an overview. Biotechnol Res Int. doi: 10.4061/2011/941810 Google Scholar
  55. Das P, Mukherjee S, Sen R (2008a) Genetic regulations of the biosynthesis of microbial surfactants: an overview. Biotechnol Gen Eng Rev 25:165–186CrossRefGoogle Scholar
  56. Das P, Mukherjee S, Sen R (2008b) Antimicrobial biosurfactants from marine Bacillus circulans: extracellular synthesis and purification. Lett Appl Microbiol 48(3):281–288Google Scholar
  57. Daverey A, Pakshirajan K, Sangeetha P (2009) Sophorolipids production by Candida bombicola using synthetic dairy wastewater. Int J Civ Environ Eng 1:4Google Scholar
  58. De Faria AF, Teodoro-Martinez DS, Barbosa GND, Vaz BG, Silva IS, Garcia JS, Totola MR, Eberlin MN, Grossman M, Alves OL, Durrant LR (2011) Production and structural characterization of surfactin (C 14/Leu7) produced by Bacillus subtilis isolate LSFM-05 grown on raw glycerol from the biodiesel industry. Process Biochem 46(10):1951–1957CrossRefGoogle Scholar
  59. Deepak R, Jayapradha R (2015) Lipopeptide biosurfactant from Bacillus thuringiensis pak 2310 A potential antagonist against Fusarium oxysporum. J Med Mycol 25(1):15–24CrossRefGoogle Scholar
  60. Desai JD, Banat IM (1997) Microbial production of surfactants and their commercial potential. Microbiol Mol Biol Rev 61:47–64Google Scholar
  61. Deziel E, Lepine F, Milot S, Villemur R (2003) rhlA is required for the production of a novel biosurfactant promoting swarming motility in Pseudomonasaeruginosa:3-(3- hydroxyalkanoyloxy) alkanoic acids (HAAs), the precursors of rhamnolipids. Microbiol 149:2005–2013CrossRefGoogle Scholar
  62. Swaranjit DP, Cameotra SS (2013) Biosurfactants in agriculture. Appl Microbiol Biotechnol 97:1005–1016CrossRefGoogle Scholar
  63. Diaz De Rienzo MA, Banat IM, Dolman B, Winterburn J, Martin PJ (2015) Sophorolipid biosurfactants: Possible uses as antibacterial and antibiofilm agent. N Biotechnol. doi: 10.1016/j.nbt.2015.02.009 Google Scholar
  64. Diggle SP, Winzer K, Lazdunski A, Williams P, Camara M (2002) Advancing the quorum in Pseudomonas aeruginosa: MvaT and the regulation of N-acylhomeserine lactone production and virulence gene expression. J Bacteriol 184(10):2576–2586CrossRefGoogle Scholar
  65. Donio MB, Ronica SF, Viji VT, Velmurugan S, Jenifer JA, Michaelbabu M, Citarasu T (2013) Isolation and characterization of halophilic Bacillus sp. BS3 able to produce pharmacologically important biosurfactants. Asian Pac J Trop Med 6(11):876–883CrossRefGoogle Scholar
  66. Duarte C, Gudina EJ, Lima CF, Rodrigues LR (2014) Effects of biosurfactants on the viability and proliferation of human breast cancer cells. AMB Express 4:40. doi: 10.1186/s13568-014-0040-0 CrossRefGoogle Scholar
  67. Dubey K, Juwarkar A (2001) Distillery and curd whey wastes as viable alternative sources for biosurfactant production. World J Microbiol Biotechnol 17(1):61–69CrossRefGoogle Scholar
  68. Dumont MJ, Narine SS (2007) Soapstock and deodorizer distillates from North American vegetable oils: review on their characterization, extraction and utilization. Food Res Int 40(8):957–974CrossRefGoogle Scholar
  69. Dusane DH, Zinzarde SS, Venugopolan VP, Mclean RJC, Weber MM, Rahman PKSM (2010) Quorum sensing: implication on rhamnolipid biosurfactant production. Biotechnol Gen Eng Rev 27:159–184CrossRefGoogle Scholar
  70. Eddouaouda K, Mnif S, Badis A, Younes SB, Cherif S, Ferhat S, Mhiri N, Chamkha M, Sayadi S (2012) Characterization of a novel biosurfactant produced by Staphylococcus sp. 1E with potential application on hydrocarbon bioremediation. J Basic Microbiol 52(4):408–418CrossRefGoogle Scholar
  71. El-Sheshtawy HS, Khalil NM, Ahmed W, Abdallah RI (2014) Monitoring of oil pollution at Gemsa Bay and bioremediation capacity of bacterial isolates with biosurfactants and nanoparticles. Mar Pollut Bull 87(1–2):191–200CrossRefGoogle Scholar
  72. Ferhat S, Mnif S, Badisa A, Eddouaoudaa K, Alouaouic R, Boucherita A, Mhirib N, Moulai-Mostefac N, Sayadi S (2011) Screening and preliminary characterization of biosurfactants produced by Ochrobactrum sp. 1C and Brevibacterium sp. 7G isolated from hydrocarbon-contaminated soils. Int Biodeterior Biodegradation 65:1182–1188CrossRefGoogle Scholar
  73. Folmsbee M, Duncan K, Han SO, Nagle D, Jennings E, McInerney M (2006) Re-identification of the halotolerant, biosurfactant-producing Bacillus licheniformis strain JF-2 as Bacillus mojavensis strain JF-2. Syst Appl Microbiol 29(8):645–649CrossRefGoogle Scholar
  74. Fonseca RR, Silva AJ, DeFranca FP, Cardoso VL, Servulo EF (2007) Optimizing carbon/nitrogen ratio for biosurfactant production by a Bacillus subtilis strain. Appl Biochem Biotechnol 137–140(1–12):471–486Google Scholar
  75. Gharaei-Fathabad E (2011) Biosurfactants in pharmaceutical industry: a mini review. Am J Drug Discov Dev 1(1):58–69CrossRefGoogle Scholar
  76. Ghribi D, Ellouze-Chaabouni S (2011) Enhancement of Bacillus subtilis lipopeptide biosurfactants production through optimization of medium composition and adequate control of aeration. Biotechnol Res Int. doi: 10.4061/2011/653654 Google Scholar
  77. Glick R, Gilmour C, Tremblay J, Satanower S, Avidan O, Deziel E, Greenberg EP, Poole K, Banin E (2010) Increase in rhamnolipid synthesis under iron limiting conditions influences surface motility and biofilm formation in Pseudomonas aeruginosa. J Bacteriol 192(12):2973–2980CrossRefGoogle Scholar
  78. Gogotov IN, Khodakov RS (2008) Surfactant production by the Rhodococcus erythropolis sH-5 bacterium grown on various carbon sources. Prikl Biokhim Mikrobiol 44:207–212Google Scholar
  79. Goldman S, Shabtai Y, Rubinovitz C, Rosenberg E, Gutnick DL (1982) Emulsan in Acinetobacter calcoaceticus RAG-1: distribution of cell-free and cell-associated cross-reacting Material. Appl Environ Microbiol 44(1):165–170Google Scholar
  80. Goswami D, Handique PJ, Deka S (2014) Rhamnolipid biosurfactant against Fusarium sacchari the causal organism of pokkah boeng disease of sugarcane. J Basic Microbiol 54(6):548–557CrossRefGoogle Scholar
  81. Grand View Research (2014) Biosurfactants market analysis by product (Rhamnolipids, Sophorolipids, MES, APG, Sorbitan Esters, Sucrose Esters) and segment forecast To 2020 Published: April 2014|ISBN Code: 978-1-68038-012-5. http://www.grandviewresearch.com/industry-analysis/biosurfactants-industry
  82. Gudina EJ, Fernandes EC, Rodrigues AI, Teixeira JA, Rodrigues LR (2015a) Biosurfactant production by Bacillus subtilis using corn steep liquor as culture medium. Front Microbiol 6:59. doi: 10.3389/fmicb.2015.00059 Google Scholar
  83. Gudina EJ, Pereira JF, Costa R, Evtuguin DV, Coutinho JA, Teixeira JA, Rodrigues LR (2015b) Novel bioemulsifier produced by a Paenibacillus strain isolated from crude oil. Microb Cell Fact 14:14. doi: 10.1186/s12934-015-0197-5 CrossRefGoogle Scholar
  84. Gudina EJ, Rodrigues AI, Alves E, Domingues MR, Teixeira JA, Rodrigues LR (2015c) Bioconversion of agro-industrial by-products in rhamnolipids toward applications in enhanced oil recovery and bioremediation. Bioresour Technol 177:87–93CrossRefGoogle Scholar
  85. Gurjar M, Khire JM, Khan MI (1995) Bioemulsifier production by Bacillus stearothermophilus VR8 isolate. Lett Appl Microbiol 21:83–86CrossRefGoogle Scholar
  86. Gutnick DL, Bayer EA, Rubinovitz C, Pines O, Shabtai Y, Goldman S, Rosenberg E (1980) Emulsan production in Acinetobacter RAG-1. Adv Biotechnol 11:455–459Google Scholar
  87. Hachaichi Z, Tazerouti A, Hacene H (2014) Growth kinetics study of a bacterial consortium producing biosurfactants, constructed with six strains isolated from an oily sludge. Adv Biosci Biotechnol 5:418–425CrossRefGoogle Scholar
  88. Haddadin MSY, AbouArqoub A, AbuReesh I, Haddadin J (2009) Kinetics of hydrocarbon extraction from oil shale using biosurfactant producing bacteria. Energy Convers Manag 50:983–990CrossRefGoogle Scholar
  89. Hao DH, Lin JQ, Lin XSJ, Su YJ, Qu YB (2008) Isolation, identification, and performance studies of a novel paraffin-degrading bacterium of Gordonia amicalis LH3. Biotechnol Biopro Eng 13(1):61–68CrossRefGoogle Scholar
  90. Hassanshahian M (2014) Isolation and characterization of biosurfactant producing bacteria from Persian Gulf (Bushehr provenance). Mar Pollut Bull 86(1–2):361–366CrossRefGoogle Scholar
  91. Hassanshahian M, Emtiazi G, Cappello S (2012) Isolation and characterization of crude-oil-degrading bacteria from the Persian Gulf and the Caspian Sea. Mar Pollut Bull 64(1):7–12CrossRefGoogle Scholar
  92. Hausmann R, Syldatk C (2014) Types and classification of microbial surfactants. In: Kosaric N, Sukan FV (eds) Biosurfactant production and utilization—processes, technologies, and economics, vol 159. CRC Press, London, pp 3–18Google Scholar
  93. Hazra C, Kundu D, Chaudhari A (2014) Lipopeptide biosurfactant from Bacillus clausii BS02 using sunflower oil soapstock: evaluation of high throughput screening methods, production, purification, characterization and its insecticidal activity. Res Adv 5:2974–2982Google Scholar
  94. Hemlata B, Selvin J, Tukaram K (2015) Optimization of iron chelating biosurfactant production by Stenotrophomonas maltophilia NBS-11. Biocatal Agric Biotechnol 4:135–143Google Scholar
  95. Hommel RK, Ratledge C (1993) Biosynthetic mechanisms of low molecular weight surfactants and their precursor molecules. In: Kosaric N (ed) Biosurfactants: production, properties, applications. Marcel Dekker Inc, New York, pp 3–63Google Scholar
  96. Hori K, Ichinohec R, Unnoc H, Marsudid S (2011) Simultaneous syntheses of polyhydroxyalkanoates and rhamnolipids by Pseudomonas aeruginosa IFO3924 at various temperatures and from various fatty acids. Biochem Eng J53:196–202CrossRefGoogle Scholar
  97. Hudak AJ, Cassidy DP (2004) Stimulating in-soil rhamnolipid production in a bioslurry reactor by limiting nitrogen. Biotechnol Bioeng 88(7):861–868CrossRefGoogle Scholar
  98. Ilori MO, Amobi CJ, Odocha AC (2005) Factors affecting biosurfactant production by oil degrading Aeromonas sp isolated from a tropical environment. Chemosphere 61(7):985–992CrossRefGoogle Scholar
  99. Ismail W, Al-rowaihi IS, Al-humam AA, Hamza RY, El AM, Bououdina M (2013) Characterization of a lipopeptide biosurfactant produced by a crude-oil-emulsifying Bacillus sp. I-15. Int Biodeterior Biodegradation 84:168–178CrossRefGoogle Scholar
  100. Ismail W, Shammary SA, El-Sayed WS, El-Sayed WS, Obuekwec C, El-Nayal AM, Raheema ASA, Al-Humam A (2015) Stimulation of rhamnolipid biosurfactants production in Pseudomonas aeruginosa AK6U by organosulfur compounds provided as sulfur sources. Biotechnol Reports 7:55–63CrossRefGoogle Scholar
  101. Jain RM, Mody K, Mishra A, Jha B (2012) Isolation and structural characterization of biosurfactant produced by an alkaliphilic bacterium Cronobacter sakazakii isolated from oil contaminated wastewater. Carbohydr Polym 87(3):2320–2326CrossRefGoogle Scholar
  102. Jain RM, Mody K, Joshi N, Mishra A, Jha B (2013) Production and structural characterization of biosurfactant produced by an alkaliphilic bacterium, Klebsiella sp. evaluation of different carbon sources. Colloids Surf B Biointerfaces 108:199–204CrossRefGoogle Scholar
  103. Jamal P, Mir S, Alam MZ, Wan Nawawi WM (2014) Isolation and selection of new biosurfactant producing bacteria from degraded palm kernel cake under liquid state fermentation. J Oleo Sci 63(8):795–804CrossRefGoogle Scholar
  104. Janek T, Krasowska A, Radwanska A, Lukaszewicz M (2013) Lipopeptide biosurfactant pseudofactin II induced apoptosis of melanoma A 375 cells by specific interaction with the plasma membrane. PLoS ONE 8(3):e57991. doi: 10.1371/journal.pone.0057991 CrossRefGoogle Scholar
  105. Janek T, Lukaszewicz M, Krasowska A (2012) Antiadhesive activity of the biosurfactant pseudofactin II secreted by the Arctic bacterium Pseudomonas fluorescens BD5. BMC Microbiol 12:24. doi: 10.1186/1471-2180 CrossRefGoogle Scholar
  106. Jang JY, Yang SY, Kim YC, Lee CW, Park MS, Kim JC, Kim IS (2013) Identification of orfamide A as an insecticidal metabolite produced by Pseudomonas protegens F6. J Agric Food Chem 61(28):6786–6791CrossRefGoogle Scholar
  107. Jara AM, Andrade RF, Campos-Takaki GM (2013) physicochemical characterization of tensio-active produced by Geobacillus stearothermophilus isolated from petroleum-contaminated soil. Colloids Surf B: Biointerfaces 101:315–318CrossRefGoogle Scholar
  108. Jennings EM, Tanner RS (2000) Biosurfactant-producing bacteria found in contaminated and uncontaminated soils. In: Proceedings of 2000 conference hazardous waste research, University of Oklahoma, pp 299–306Google Scholar
  109. Johnsen AR, Wick LY, Harms H (2005) Principles of microbial PAH-degradation in soil. Environ Poll 133(1):71–84CrossRefGoogle Scholar
  110. Joshi S, Bharucha C, Jha S, Yadav S, Nerurkar A, Desai AJ (2008) Biosurfactant production using molasses and whey under thermophilic conditions. Bioresour Technol 99:195–1999CrossRefGoogle Scholar
  111. Joshi-Navare K, Prabhune A (2013) A biosurfactant-sophorolipid acts in synergy with antibiotics to enhance their efficiency. Biomed Res Int. doi: 10.1155/2013/512495 Google Scholar
  112. Kato T, Haruki M, Imanaka T, Morikawa M, Kanaya S (2001) Isolation and characterization of long-chain-alkane degrading Bacillus thermoleovorans from deep subterranean petroleum reservoirs. J Biosci Bioeng 91(1):64–70CrossRefGoogle Scholar
  113. Kavitha V, Mandal AB, Gnanamani A (2014) Microbial biosurfactant mediated removal and or solubilization of crude oil contamination from soil and aqueous phase: an approach with Bacillus licheniformis MTCC 5514. Int Biodeterior Biodegradation 94:24–30CrossRefGoogle Scholar
  114. Khopade A, Biao R, Liu X, Mahadik K, Zhang L, Kokare C (2012) Production and stability studies of the biosurfactant isolated from marine Nocardiopsis sp. B4. Desalination 3:198–204CrossRefGoogle Scholar
  115. Konishi M, Yoshida Y, Horiuchi J (2015) Efficient production of sophorolipids by Starmerella bombicola using a corncob hydrolysate medium. J Biosci Bioeng 119(3):317–322CrossRefGoogle Scholar
  116. Kumar CG, Mamidyala SK, Sujitha P, Muluka H, Akkenapally S (2012) Evaluation of critical nutritional parameters and their significance in the production of rhamnolipid biosurfactants from Pseudomonas aeruginosa BS-161R. Biotechnol Prog 28(6):1507–1516CrossRefGoogle Scholar
  117. Kumari B, Singh SN, Singh DP (2012) Characterization of two biosurfactant producing strains in crude oil degradation. Process Biochem 47(12):2463–2471CrossRefGoogle Scholar
  118. Lang S, Philp JC (1998) Surface-active lipids in rhodococci. Antonie Van Leeuwenhoek 74(1–3):59–70CrossRefGoogle Scholar
  119. Lenchi N, Inceoglu O, Kebbouche-Gana S, Gana ML, Lliros M, Servais P, Garcia-Armisen T (2013) Diversity of microbial communities in production and injection waters of algerian oilfields revealed by 16S rRNA gene amplicon 454 pyrosequencing. PLoS ONE 8(6):e66588. doi: 10.1371/journal.pone.0066588 CrossRefGoogle Scholar
  120. Li AH, Xu MY, Sun W, Sun GP (2011) Rhamnolipid production by Pseudomonas aeruginosa GIM 32 using different substrates including molasses distillery wastewater. Appl Biochem Biotechnol 163(5):600–611CrossRefGoogle Scholar
  121. Liang TW, Wu CC, Cheng WT, Chen YC, Wang CL, Wang IL, Wang SL (2014) Exopolysaccharides and antimicrobial biosurfactants produced by Paenibacillus macerans TKU029. Appl Biochem Biotechnol 172(2):933–950CrossRefGoogle Scholar
  122. Liu JF, Mbadinga SM, Yang SZ, Gu JD, Mu BZ (2015) Chemical structure, property and potential applications of biosurfactants produced by Bacillus subtilis in petroleum recovery and spill mitigation. Int J Mol Sci 16(3):4814–4837CrossRefGoogle Scholar
  123. Liu W, Wang X, Wu L, Chen M, Tu C, Luo Y, Christie P (2012) Isolation, identification and characterization of Bacillus amyloliquefaciens BZ-6, a bacterial isolate for enhancing oil recovery from oily sludge. Chemosphere 87(10):1105–1110CrossRefGoogle Scholar
  124. Lotfabad TB, Shourian M, Roostaazad R, Najafabadi AR, Adelzadeh MR, Noghabi KA (2009) An efficient biosurfactant-producing bacterium Pseudomonas aeruginosa MR01, isolated from oil excavation areas in south of Iran. Colloids Surf B Biointerfaces 69(2):183–193CrossRefGoogle Scholar
  125. Maciel BM, Dias JCT, Santos ACF, Argolo Filho RC, Fontana R, Loguercio LL, Rezende RP (2007) Microbial surfactant activities from a petrochemical land farm in a humid tropical region of Brazil. Can J Microbiol 53(8):937–943CrossRefGoogle Scholar
  126. Makkar RS, Cameotra SS (1997) Biosurfactant production by a thermophilic Bacillus subtilis strain. J Ind Microbiol Biotechnol 18(1):37–42CrossRefGoogle Scholar
  127. Makkar RS, Cameotra SS (2002) Effects of various nutritional supplements on biosurfactant production by a strain of Bacillus subtilis at 45 C. J Surfactants Deterg 5(1):11–7Google Scholar
  128. Mandal SM, Sharma S, Pinnaka AK, Kumari A, Korpole S (2013) Isolation and characterization of diverse antimicrobial lipopeptides produced by Citrobacter and Enterobacter. BMC Microbiol 13:152. doi: 10.1186/1471-2180-13-152 CrossRefGoogle Scholar
  129. Maneerat S (2005) Production of biosurfactant from renewable resources. Songklanakarin J Sci Technol 27(3):675–683Google Scholar
  130. Manivasagan P, Sivasankar P, Venkatesan J, Sivakumar K, Kim SK (2014) Optimization, production and characterization of glycolipid biosurfactant from the marine actinobacterium, Streptomyces sp. MAB36. Bioprocess Biosyst Eng 5:783–797CrossRefGoogle Scholar
  131. Mao X, Jiang R, Xiao W, Yu J (2014) Use of surfactants for the remediation of contaminated soils: a review. J Hazard Mater 285:419–435CrossRefGoogle Scholar
  132. Maqsood MI, Jamal A (2011) Factors affecting the rhamnolipid biosurfactant production. Pak J Biotechnol 8(1):1–5Google Scholar
  133. Marchant R, Banat IM (2012) Biosurfactants: a sustainable replacement for chemical surfactants? Biotechnol Lett 34(9):1597–1605CrossRefGoogle Scholar
  134. Mashburn LM, Whiteley M (2005) Membrane vesicles traffic signals and facilitates group activities in a prokaryote. Nature 437:422–425CrossRefGoogle Scholar
  135. Mata-Sandoval JC, Karns J, Torrents A (2001) Effect of nutritional and environmental conditions on the production and composition of rhamnolipids by P. aeruginosa UG2. Microbiol Res 155(4):249–256CrossRefGoogle Scholar
  136. Menkhaus M, Ullrich C, Kluge B, Vater J, Vollenbroich D, Kamp RM (1993) Structural and functional organization of the surfactin synthetase multienzyme system. J Biol Chem 268:7678–7684Google Scholar
  137. Miao S, Dashtbozorg SS, Callow NV, Ju LK (2015) Rhamnolipids as platform molecules for production of potential anti-zoospore agrochemicals. J Agric Food Chem 63:3367–3376CrossRefGoogle Scholar
  138. Mnif I, Ghribi D (2015) Review lipopeptides biosurfactants: mean classes and new insights for industrial, biomedical, and environmental applications. Biopolymers 104(3):129–147CrossRefGoogle Scholar
  139. Mnif S, Chamkha M, Labat M, Sayadi S (2011) Simultaneous hydrocarbon biodegradation and biosurfactant production by oilfield selected bacteria. J Appl Microbiol 111(3):525–536CrossRefGoogle Scholar
  140. Montagnolli RN, Lopes PR, Bidoia ED (2015) Assessing Bacillus subtilis biosurfactant effects on the biodegradation of petroleum products. Environ Monit Assess 187(1):4116CrossRefGoogle Scholar
  141. Mulligan CN, Gibbs BF (2004) Types, production and applications of biosurfactants. Proc Indian Natl Sci Acad B 70(1):31–55Google Scholar
  142. Muthusamy K, Gopalakrishnan S, Ravi TK, Sivachidambaram P (2008) Biosurfactants: Properties, commercial production and application. Curr Sci 94:736–747Google Scholar
  143. Najafi AR, Rahimpour MR, Jahanmiri AH, Roostaazad R, Arabian D (2011) Colloids and Surfaces B: Biointerfaces Interactive optimization of biosurfactant production by Paenibacillus alvei ARN63 isolated from an Iranian oil well. Colloids Surf B Biointerfaces 82(1):33–39CrossRefGoogle Scholar
  144. Najafi AR, Rahimpour MR, Jahanmiri AH, Roostaazad R, Arabian D, Ghobadi Z (2010) Enhancing biosurfactant production from an indigenous strain of Bacillus mycoides by optimizing the growth conditions using a response surface methodology. Chem Eng J 163(3):188–194CrossRefGoogle Scholar
  145. Nie M, Yin X, Ren C, Wang Y, Xu F, Shen Q (2010) Novel rhamnolipid biosurfactants produced by a polycyclic aromatic hydrocarbon-degrading bacterium Pseudomonas aeruginosa strain NY3. Biotechnol Adv 28(5):635–643CrossRefGoogle Scholar
  146. Nikolopoulou M, Pasadakis N, Kalogerakis N (2013) Evaluation of autochthonous bioaugmentation and biostimulation during microcosm-simulated oil spills. Mar Pollut Bull 72(1):165–173CrossRefGoogle Scholar
  147. Noparat P, Maneerat S, Saimmai A (2014) Utilization of palm oil decanter cake as a novel substrate for biosurfactant production from a new and promising strain of Ochrobactrum anthropi 2/3. World J Microbiol Biotechnol 3:865–877CrossRefGoogle Scholar
  148. Oliveira FJS, Vazquez L, De Campos NP, De Franca FP (2009) Production of rhamnolipids by a Pseudomonas alcaligenes strain. Process Biochem 44:383–389CrossRefGoogle Scholar
  149. Onwosi CO, Odibo FJ (2012) Effects of carbon and nitrogen sources on rhamnolipid biosurfactant production by Pseudomonas nitroreducens isolated from soil. World J Microbiol Biotechnol 28:937–942CrossRefGoogle Scholar
  150. Pacwa-Plociniczak M, Plaza GA, Piotrowska-Seget Z, Cameotra SS (2011) Environmental applications of biosurfactants: recent advances. Int J Mol Sci 12:633–654CrossRefGoogle Scholar
  151. Pansiripat S, Pornsunthorntawee O, Rujiravanit R, Kitiyanan B, Somboonthanate P, Chavadej S (2010) Biosurfactant production by Pseudomonas aeruginosa SP4 using sequencing batch reactors: effect of oil-to-glucose ratio. Biochem Eng J 49:185–191CrossRefGoogle Scholar
  152. Park E, Kim J (2015) Characteristics of culture conditions for the production of biosurfactant by Bacillus pumilus IJ-1. J Appl Biol Chem 58:81–88CrossRefGoogle Scholar
  153. Parthasarathi R, Sivakumaar PK (2009) Effect of different carbon sources on the production of biosurfactant by pseudomonas fluorescens isolated from mangrove forests (Pichavaram) Tamil Nadu India. Glob J Environ Res 3(2):99–101Google Scholar
  154. Peixoto RS, Vermelho AB, Rosado AS (2011) Petroleum-degrading enzymes: bioremediation and new prospects. Enzyme Res. doi: 10.4061/2011/475193 Google Scholar
  155. Perfumo A, Rancich I, Banat IM (2010) Possibilities and challenges for biosurfactants use in petroleum industry. Adv Exp Med Biol 672:135–145CrossRefGoogle Scholar
  156. Persson A, Molin G, Andersson N, Sjoholm J (1990) Biosurfactant yields and nutrient consumption of Pseudomonas fluorescens 378 studied in a microcomputer controlled multifermentation system. Biotechnol Bioeng 36(3):252–255CrossRefGoogle Scholar
  157. Peypoux F, Bonmatin JM, Wallach J (1999) Recent trends in the biochemistry of surfactin. Appl Microbiol Biotechnol 51(5):553–563CrossRefGoogle Scholar
  158. Pirog TP, Konon AD, Beregovaya KA, Shulyakova MA (2014) Antiadhesive properties of the surfactants of Acinetobacter calcoaceticus IMB B-7241, Rhodococcus erythropolis IMB Ac-5017, and Nocardia vaccinii IMB B-7405. Microbiol 83(6):732–739CrossRefGoogle Scholar
  159. Pirog TP, Shevchuk TA, Oiu M, Parfeniuk SA, Iutinskaia GA (2013) Effect of growth factors and some microelements on biosurfactant synthesis of Acinetobacter calcoaceticus IMV B-7241. Mikrobiol Z 75(5):18–26Google Scholar
  160. Poomtein J, Thaniyavarn J, Pinphanichakarn P, Jindamorakot M (2013) Production and characterization of a biosurfactant from Cyberlindnera samutprakarnensis JP52. Biosci Biotechnol Biochem 77(12):2362–2370CrossRefGoogle Scholar
  161. Pornsunthorntawee O, Arttaweeporn N, Paisanjit S (2008a) Isolation and comparison of biosurfactants produced by Bacillus subtilis PT2 and Pseudomonas aeruginosa SP4 for microbial surfactant-enhanced oil recovery. Biochem Eng J 42(2):172–179CrossRefGoogle Scholar
  162. Pornsunthorntawee O, Wongpanit P, Chavadej S, Abe M, Rujiravanit R (2008b) Structural and physicochemical characterization of crude biosurfactant produced by Pseudomonas aeruginosa SP4 isolated from petroleum-contaminated soil. Bioresour Technol 99(6):1589–1595CrossRefGoogle Scholar
  163. Portilla-Rivera O, Torrado A, Domilnguez JM, Moldes AB (2008) Stability and emulsifying capacity of biosurfactants obtained from lignocellulosic sources using Lactobacillus pentosus. J Agric Food Chem 56:8074–8080CrossRefGoogle Scholar
  164. Prabhawathi V, Thirunavukarasu K, Doble M (2014) A study on the long term effect of biofilm produced by biosurfactant producing microbe on medical implant. Mater Sci Eng C Mater Biol Appl 40:212–218. doi: 10.1016/j.msec.2014.03.050 CrossRefGoogle Scholar
  165. Pradhan AK, Pradhan N, Mohapatra P, Kundu CN, Panda PK, Mishra BK (2014) Cytotoxic effect of microbial biosurfactants against human embryonic kidney cancerous cell: HEK-293 and their possible role in apoptosis. Appl Biochem Biotechnol 174(5):1850–1858CrossRefGoogle Scholar
  166. Pruthi V, Cameotra SS (1997) Production and properties of a biosurfactant synthesized by Arthrobacter protophormiae an Antarctic strain. World J Microbiol Biotechnol 13:137–139CrossRefGoogle Scholar
  167. Rahman KSM, Rahman TJ, McClean S, Marchant R, Banat IM (2002a) Rhamnolipid biosurfactant production by strains of Pseudomonas aeruginosa using low-cost raw materials. Biotechnol Prog 6:1277–1281CrossRefGoogle Scholar
  168. Rahman KSM, Thahira-Rahman J, Lakshmanaperumalsamy P, Banat IM (2002b) Occurrence of crude oil degrading bacteria in gasoline and diesel station soils. J Basic Microbiol 42:286–293CrossRefGoogle Scholar
  169. Rapp P, Gabriel-Jurgens LH (2003) Degradation of alkanes and highly chlorinated benzenes, and production of biosurfactants, by a psychrophilic Rhodococcus sp. and genetic characterization of its chlorobenzene dioxygenase. Microbiol 149:2879–2890CrossRefGoogle Scholar
  170. Ray S (2012) Optimization of process conditions for biosurfactant production from mutant strain of Bacillus sp. (m28) in a 5l laboratory fermenter. J Microbiol Biotech Res 2(3):431–439Google Scholar
  171. Raza ZA, Khan MS, Khalid ZM, Rehman A (2006) Production of Biosurfactant using different hydrocarbons by Pseudomonas aeruginosa EBN-8 mutant. Z Naturforsch 61(1–2):87–94Google Scholar
  172. Reis RS, Pereira AG, Neves BC, Freira DMG (2011) Gene regulation of rhamnolipid production in Pseudomonas: a review. Biores Technol 102:6377–6384CrossRefGoogle Scholar
  173. Ribeiro IA, Faustino CM, Guerreiro PS, Frade RF, Bronze MR, Castro MF, Ribeiro MH (2015) Development of novel sophorolipids with improved cytotoxic activity toward MDA-MB-231 breast cancer cells. J Mol Recognit. doi: 10.1002/jmr.2403 Google Scholar
  174. Rizzo C, Michaud L, Hormann B, Gerçe B, Syldatk C, Hausmann R, De Domenico E, Lo Giudice A (2013) Bacteria associated with sabellids (Polychaeta: Annelida) as a novel source of surface active compounds. Mar Pollut Bull 70(1–2):125–133CrossRefGoogle Scholar
  175. Rocha CA, Pedregosa AM, Laborda F (2011) Biosurfactant-mediated biodegradation of straight and methyl-branched alkanes by Pseudomonas aeruginosa ATCC 55925. AMB Express. doi: 10.1186/2191-0855-1-9 Google Scholar
  176. Rodrigues LR (2015) Microbial surfactants: fundamentals and applicability in the formulation of nano sized drug delivery vectors. J Colloid Interface Sci 1:304–316CrossRefGoogle Scholar
  177. Roldan-Carrillo T, Martinez-Garcia X, Zapata-Penasco I, Castorena-Cortes G, Reyes-Avila J, Mayol-Castillo M, Olguin-Lora P (2011) Evaluation of the effect of nutrient ratios on biosurfactant production by Serratia marcescens using a Box-Behnken design. Colloids Surf B Biointerfaces 86(2):384–389CrossRefGoogle Scholar
  178. Rufino RD, De Luna JM, De Campos Takaki GM, Sarubbo LS (2014) Characterization and properties of the biosurfactant produced by Candida lipolytica UCP 0988. Electronic J Biotechnol 17:34–38CrossRefGoogle Scholar
  179. Ruhal R, Kataria R, Choudhury B (2013) Trends in bacterial trehalose metabolism and significant nodes of metabolic pathway in the direction of trehalose accumulation. Microb Biotechnol 6(5):493–502CrossRefGoogle Scholar
  180. Saikia RR, Deka H, Goswami D, Lahkar J, Borah SN, Patowary K, Baruah P, Deka S (2014) Achieving the best yield in glycolipid biosurfactant preparation by selecting the proper carbon/nitrogen ratio. J Surfact Det 17(3):563–571CrossRefGoogle Scholar
  181. Saikia RR, Deka S, Deka M, Sarma H (2012) Optimization of environmental factors for improved production of rhamnolipid biosurfactant by Pseudomonas aeruginosa RS29 on glycerol. J Basic Microbiol 52:446–457CrossRefGoogle Scholar
  182. Saimmai A, Rukadee O, Onlamool T, Sobhon V, Maneerat S (2012) Isolation and functional characterization of a biosurfactant produced by a new and promising strain of Oleomonas sagaranensis AT18. World J Microbiol Biotechnol 28(10):2973–2986CrossRefGoogle Scholar
  183. Sana S, Bhattacharya M, Datta S, Biswas D (2015) RSM study for the production of rhamnolipid using Catla catla Fish fat. Int J Curr Microbiol App Sci 4(1):169–178Google Scholar
  184. Sandrin C, Peypoux F, Michel G (1990) Co-production of surfactin and iturin A, lipopetides with surfactant and antifungal properties by Bacillussubtilis. Biotechnol Appl Biochem 12:370–375Google Scholar
  185. Sanket KG, Yagnik BN (2013) Current trend and potential for microbial biosurfactants. Asian J Exp Biol Sci 4(1):1–8Google Scholar
  186. Schmidberger A, Henkel M, Hausmann R, Schwartz T (2014) Influence of ferric iron on gene expression and rhamnolipid synthesis during batch cultivation of Pseudomonas aeruginosa PAO1. Appl Microbiol Biotechnol 98(15):6725–6737CrossRefGoogle Scholar
  187. Shaligram NS, Singhal RS (2010) Surfactin a review on biosynthesis, fermentation, purification and applications. Food Technol Biotechnol 48(2):119–134Google Scholar
  188. Sharafi H, Abdoli M, Hajfarajollah H, Samie N, Alidoust L, Abbasi H, Fooladi J, Zahiri HS, Noghabi KA (2014) First report of a lipopeptide biosurfactant from thermophilic bacterium Aneurinibacillus thermoaerophilus MK01 newly isolated from municipal landfill site. Appl Biochem Biotechnol 173(5):1236–1249CrossRefGoogle Scholar
  189. Sharma D, Saharan BS, Chauhan N, Bansal A, Procha S (2014) Production and structural characterization of Lactobacillus helveticus derived biosurfactant. Sci W J. doi: 10.1155/2014/493548 Google Scholar
  190. Sharma D, Singh SB (2014) Simultaneous production of biosurfactants and bacteriocins by probiotic Lactobacillus casei MRTL3. Int J Microbiol. doi: 10.1155/2014/698713 Google Scholar
  191. Sierra-Garcıa IN, Alvarez CJ, Vasconcellos SP, Souza AP, Neto EV (2014) New hydrocarbon degradation pathways in the microbial metagenome from Brazilian petroleum reservoirs. PLoS ONE. doi: 10.1371/journal.pone.0090087 Google Scholar
  192. Singh AK, Cameotra SS (2013) Efficiency of lipopeptide biosurfactants in removal of petroleum hydrocarbons and heavy metals from contaminated soil. Environ Sci Pollut Res Int 20(10):7367–7376CrossRefGoogle Scholar
  193. Singh AK, Rautela R, Cameotra SS (2014a) Substrate dependent in vitro antifungal activity of Bacillus sp strain AR2. Microb Cell Fact 13:67. doi: 10.1186/1475-2859-13-67 CrossRefGoogle Scholar
  194. Singh BN, Rawat AK, Khan W, Naqvi AH, Singh BR (2014b) Biosynthesis of stable antioxidant ZnO nanoparticles by Pseudomonas aeruginosa rhamnolipids. PLoS ONE 9(9):e106937. doi: 10.1371/journal.pone.0106937 CrossRefGoogle Scholar
  195. Soberon-Chavez G, Maier RM (2011) Biosurfactants: a general overview. In: Soberon-Chavez G (ed) Biosurfactants. Springer, Berlin, pp 1–11CrossRefGoogle Scholar
  196. Solaiman DKY, Ashby RD, Crocker NV (2015) High-titer production and strong antimicrobial activity of sophorolipids from Rhodotorula bogoriensis. Biotechnol Prog. doi: 10.1002/btpr.2101 Google Scholar
  197. Sousa M, Melo VM, Rodrigues S, Santana HB, Goncalves LR (2012) Screening of biosurfactant producing Bacillus strains using glycerol from the biodiesel synthesis as main carbon source. Bioprocess Biosyst Eng 35(6):897–906CrossRefGoogle Scholar
  198. Sriram MI, Gayathiri S, Gnanaselvi U, Jenifer PS, Mohan Raj S, Gurunathan S (2011) Novel lipopeptide biosurfactant produced by hydrocarbon degrading and heavy metal tolerant bacterium Escherichia fergusonii KLU01 as a potential tool for bioremediation. Bioresour Technol 102(19):9291–9295CrossRefGoogle Scholar
  199. Stipcevic T, Knight CP, Kippin TE (2013) Stimulation of adult neural stem cells with a novel glycolipid biosurfactant. Acta Neurol Belg 113(4):501–506CrossRefGoogle Scholar
  200. Striebich RC, Smart CE, Gunasekera TS, Susan SM, Ellen MS, Brett WM, Oscar NR (2014) Characterization of the F-76 diesel and Jet-A aviation fuel hydrocarbon degradation profiles of Pseudomonas aeruginosa and Marinobacter hydrocarbonoclasticus. Int Biodeterior Biodegradation 93:33–43CrossRefGoogle Scholar
  201. Sullivan ER (1998) Molecular genetics of biosurfactant production. Curr Opin Biotechnol 9:263–269CrossRefGoogle Scholar
  202. Syldatk C, Wagner F (1987) Production of biosurfactants. In: Kosaric N, Cairns WL, Gray NCC (eds) Biosurfactants and biotechnology. Marcel Dekker, New York, pp 89–120Google Scholar
  203. Thaniyavarn J, Chongchin A, Wanitsuksombut N, Thaniyavarn S, Pinphanichakarn P, Leepipatpiboon N, Morikawa M, Kanaya S (2006) Biosurfactant production by Pseudomonas aeruginosa A41 using palm oil as carbon source. J Gen Appl Microbiol 52:215–222CrossRefGoogle Scholar
  204. Thavasi R, Jayalakshmi S, Banat IM (2011) Application of biosurfactant produced from peanut oil cake by Lactobacillus delbrueckii in biodegradation of crude oil. Bioresour Technol 102:3366–3372CrossRefGoogle Scholar
  205. Valentin L, Nousiainen A, Mikkonen A (2013) Introduction to organic contaminants in soil: concepts and risks. In: Vicent J et al (eds) Emerging organic contaminants in sludges: analysis, fate and biological treatment, vol 24. Springer, Berlin, pp 1–30CrossRefGoogle Scholar
  206. Vanavil B, Perumalsamy M, Rao AS (2013) Biosurfactant production from novel air isolate P. aeruginosa NITT6L: screening, characterization and optimization of media. J Microbiol Biotechnol 23:1229–1243CrossRefGoogle Scholar
  207. VanBogaert INA, Ciesielska K, Devreese B, Soetaert W (2014) Sophorolipids: Microbial synthesis and application. In: Kosaric N, Sukan FV (eds) Biosurfactant production and utilization—processes, technologies, and economics, vol 159. CRC Press, London, pp 19–36Google Scholar
  208. Van-Dyke MI, Couture P, Brauer M, Lee H, Trevors JT (1993) Pseudomonas aeruginosa UG2 rhamnolipid biosurfactants: structural characterization and their usein removing hydrophobic compounds from soil. Can J Microbiol 39(11):1071–1078CrossRefGoogle Scholar
  209. Varadavenkatesan T, Murty VR (2013) Production of a lipopeptide biosurfactant by a novel Bacillus sp. and its applicability to enhanced oil recovery. ISRN Microbiol. doi: 10.1155/2013/621519 Google Scholar
  210. Varvaresou A, Iakovou K (2015) Biosurfactants in cosmetics and biopharmaceuticals. Lett Appl Microbiol. doi: 10.1111/lam.12440 Google Scholar
  211. Velioglu Z, Ozturk Urek R (2015) Optimization of cultural conditions for biosurfactant production by Pleurotus djamor in solid state fermentation. J Biosci Bioeng. doi: 10.1016/j.jbiosc.2015.03.007 Google Scholar
  212. Vollbrecht E, Rau U, Lang S (1999) Microbial conversion of vegetable oils into surface-active di-, tri- and tetrasaccharide lipids (biosurfactants) by the bacterial strain Tsukamurella spec. Lipid Lett 101:389–394CrossRefGoogle Scholar
  213. Wang XB, Nie Y, Tang YQ, Wu G, Wu XL (2013) n-Alkane chain length alters Dietzia sp. strain DQ12-45-1b biosurfactant production and cell surface activity. Appl Environ Microbiol 79(1):400–402CrossRefGoogle Scholar
  214. Wei YH, Chou CL, Chang JS (2005) Rhamnolipid production by indigenous Pseudomonas aeruginosa J4 originating from petrochemical wastewater. Biochem Eng J 27:146–154CrossRefGoogle Scholar
  215. Willenbacher J, Rau J, Rogalla J, Syldatk C, Hausmann R (2015) Foam-free production of surfactin via anaerobic fermentation of Bacillus subtilis DSM 10. AMB Express 5:21. doi: 10.1186/s13568-015-0107-6 CrossRefGoogle Scholar
  216. Wu JY, Yeh KL, Lu WB, Lin CL, Chang JS (2008) Rhamnolipid production with indigenous Pseudomonas aeruginosa EM1 isolated from oil-contaminated site. Bioresour Technol 99(5):1157–1164CrossRefGoogle Scholar
  217. Xia W, Du Z, Cui Q, Dong H, Wang F, He P, Tang Y (2014) Biosurfactant produced by novel Pseudomonas sp. WJ6 with biodegradation of n-alkanes and polycyclic aromatic hydrocarbons. J Hazard Mater 276:489–498CrossRefGoogle Scholar
  218. Xia W, Zhi-Bin L, Han-Ping D, Li Y, Qing-Feng C, Yong-Qiang B (2012) Biosynthesis, characterization, and oil recovery application of biosurfactant produced by indigenous Pseudomonas aeruginosa WJ-1 using waste vegetable oils. Appl Biochem Biotechnol 166:1148–1166CrossRefGoogle Scholar
  219. Yin H, Qiang J, Jia Y, Ye J, Peng H, Qin H, Zhang N, He B (2009) Characteristics of biosurfactant produced by Pseudomonas aeruginosa S6 isolated from oil-containing wastewater. Process Biochem 44(3):302–308CrossRefGoogle Scholar
  220. Yoshida S, Koitabashi M, Nakamura J, Fukuoka T, Sakai H, Abe M, Kitamoto D, Kitamoto H (2015) Effects of biosurfactants, mannosylerythritol lipids, on the hydrophobicity of solid surfaces and infection behaviours of plant pathogenic fungi. J Appl Microbiol 119(1):215–224CrossRefGoogle Scholar
  221. Yu H, Huang GH, An CJ, Wei J (2011) Combined effects of DOM extracted from site soil/compost and biosurfactant on the sorption and desorption of PAHs in a soil-water system. J Hazard Mater 190:883–890CrossRefGoogle Scholar
  222. Yu H, Huang GH, Xiao H, Wang L, Chen W (2014) Combined effects of DOM and biosurfactant enhanced biodegradation of polycylic armotic hydrocarbons (PAHs) in soil-water systems. Environ Sci Pollut Res Int 21(17):10536–10549CrossRefGoogle Scholar
  223. Yu M, Liu Z, Zeng G, Zhong H, Liu Y, Jiang Y, Li M, He X, He Y (2015) Characteristics of mannosylerythritol lipids and their environmental potential. Carbohydr Res 407:63–72CrossRefGoogle Scholar
  224. Zhang L, Veres- Schalnat TA, Somogyi A (2012) Fatty acid cosubstrates provide β-oxidation precursors for rhamnolipid biosynthesis in Pseudomonas aeruginosa as evidenced by isotope tracing and gene expression assays. Appl Environ Microbiol 78:8611–8622CrossRefGoogle Scholar
  225. Zhang X, Liu X, Wang Q, Chen X, Li H, Wei J, Xu G (2014) Diesel degradation potential of endophytic bacteria isolated from Scirpus triqueter. Diesel degradation potential of endophytic bacteria isolated from Scirpus triqueter. Int Biodeterior Biodegradation 87:99–105CrossRefGoogle Scholar
  226. Zhang Y, Liu C, Dong B, Ma X, Hou L, Cao X, Wang C (2015) Anti-inflammatory activity and mechanism of surfactin in lipopolysaccharide-activated macrophages. Inflammation 38(2):756–764CrossRefGoogle Scholar
  227. Zhao F, Shi R, Zhao J, Li G, Bai X, Han S, Zhang Y (2015) Heterologous production of Pseudomonas aeruginosa rhamnolipid under anaerobic conditions for microbial enhanced oil recovery. J Appl Microbiol 118(2):379–389CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Singapore 2017

Authors and Affiliations

  • Sam Joy
    • 1
  • Tanvi Butalia
    • 1
  • Shashi Sharma
    • 1
    Email author
  • Pattanathu K. S. M. Rahman
    • 2
  1. 1.Amity Institute of BiotechnologyAmity UniversityNoidaIndia
  2. 2.School of Science and EngineeringTeesside UniversityMiddlesbroughUK

Personalised recommendations