HC-0B-05: Two-Phase Partitioning Bioreactors for Treatment of Volatile Hydrocarbons

  • Guillermo Quijano
  • José A. Miguel-Romera
  • Luis M. Bonilla-Morte
  • Ivonne Figueroa-González
Chapter

Abstract

Nowadays air pollutants are becoming more widespread as the pace of industrial activity accelerates. Emission inventories reveal that atmospheric pollutant emissions have continuously increased since the beginning of the twentieth century, with volatile organic compounds (VOCs) representing about 7 % of these emissions. Despite this relatively low emission share, VOC emissions represent a major environmental and human health problem since most VOCs can be toxic depending on the concentration and exposure time and they also contribute to substantial damage to natural ecosystems. The negative effects of VOCs on human health and natural ecosystems have therefore led to stricter environmental regulations worldwide. VOCs emitted from industrial facilities are usually volatile hydrocarbons (VHs), which are extensively used in manufacturing processes. Among the available technologies for VHs treatment, biological processes in many cases constitute the most cost-effective technology for treating low pollutant concentrations and their implementation at industrial scale is growing exponentially. Unfortunately, several VHs can produce toxic effects to the microbial communities, leading to inhibition issues as in the case of aromatic compounds. Furthermore, some VHs used as monomers in the plastics industry or as industrial solvents exhibit a very low aqueous solubility, leading to mass transfer issues and poor removal performance. Two-phase partitioning bioreactors (TPPBs) emerged as innovative multiphase systems capable of overcoming the key limitations of traditional biological technologies such as the low mass transfer rates of hydrophobic VOCs and microbial inhibition at high pollutant loading rates. This work presents an updated state-of-the-art on the advances of TPPB technology for the treatment of VHs. The fundamentals of TPPB design, operation, microbiology and mass transfer are reviewed. Niches for future research, opportunities for TPPB optimization and challenges towards full-scale applications are identified and discussed.

Keywords

Atmospheric pollution Biological air treatment Two-phase partitioning bioreactors Volatile hydrocarbons Volatile organic compounds 

References

  1. Alfonsín C, Lebrero R, Estrada JM et al (2015) Selection of odour removal technologies in wastewater treatment plants: a guideline based on Life Cycle Assessment. J Environ Manage 149:77–84. doi:10.1016/j.jenvman.2014.10.011 CrossRefGoogle Scholar
  2. Arriaga S, Muñoz R, Hernández S et al (2006) Gaseous hexane biodegradation by Fusarium solani in two liquid phase packed-bed and stirred-tank bioreactors. Environ Sci Technol 40:2390–2395. doi:10.1021/es051512m CrossRefGoogle Scholar
  3. Ascon-Cabrera M, Lebeault J-M (1993) Selection of xenobiotic-degrading microorganisms in a biphasic aqueous-organic system. Appl Envir Microbiol 59:1717–1724Google Scholar
  4. Ascon-Cabrera MA, Lebeault J-M (1995) Cell hydrophobicity influencing the activity/stability of xenobiotic-degrading microorganisms in a continuous biphasic aqueous-organic system. J Ferment Bioeng 80:270–275. doi:10.1016/0922-338X(95)90828-N CrossRefGoogle Scholar
  5. Atkinson R (2000) Atmospheric chemistry of VOCs and NOx. Atmos Environ 34:2063–2101. doi:10.1016/S1352-2310(99)00460-4 CrossRefGoogle Scholar
  6. Bailón L, Nikolausz M, Kästner M et al (2009) Removal of dichloromethane from waste gases in one- and two-liquid-phase stirred tank bioreactors and biotrickling filters. Water Res 43:11–20. doi:10.1016/j.watres.2008.09.031 CrossRefGoogle Scholar
  7. Baumann MD, Daugulis AJ, Jessop PG (2005) Phosphonium ionic liquids for degradation of phenol in a two-phase partitioning bioreactor. Appl Microbiol Biotechnol 67:131–137. doi:10.1007/s00253-004-1768-2 CrossRefGoogle Scholar
  8. Boudreau NG, Daugulis AJ (2006) Transient performance of two-phase partitioning bioreactors treating a toluene contaminated gas stream. Biotechnol Bioeng 94:448–457. doi:10.1002/bit.20876 CrossRefGoogle Scholar
  9. Bowker RP (2000) Biological odour control by diffusion into activated sludge basins. Water Sci Technol 41:127–132Google Scholar
  10. Bruce LJ, Daugulis AJ (1991) Solvent selection strategies for extractive biocatalysis. Biotechnol Prog 7:116–124. doi:10.1021/bp00008a006 CrossRefGoogle Scholar
  11. Burgess JE, Parsons SA, Stuetz RM (2001) Developments in odour control and waste gas treatment biotechnology: a review. Biotechnol Adv 19:35–63. doi:10.1016/S0734-9750(00)00058-6 CrossRefGoogle Scholar
  12. Cabrol L, Malhautier L (2011) Integrating microbial ecology in bioprocess understanding: the case of gas biofiltration. Appl Microbiol Biotechnol 90:837–849. doi:10.1007/s00253-011-3191-9 CrossRefGoogle Scholar
  13. Cesario MT, Beeftink HH, Tramper J (1992) Biological treatment of waste gases containing poorly-water soluble compounds. In: Dragt AJ, van Ham J (eds) Biotech. Air Pollut. Abat. Odour Control Policies. Elsevier Science Publishers, Amsterdam, pp 135–140Google Scholar
  14. Cesário MT, Beverloo WA, Tramper J, Beeftink HH (1997) Enhancement of gas-liquid mass transfer rate of apolar pollutants in the biological waste gas treatment by a dispersed organic solvent. Enzyme Microb Technol 21:578–588. doi:10.1016/S0141-0229(97)00069-0 CrossRefGoogle Scholar
  15. Clarke KG, Williams PC, Smit MS, Harrison STL (2006) Enhancement and repression of the volumetric oxygen transfer coefficient through hydrocarbon addition and its influence on oxygen transfer rate in stirred tank bioreactors. Biochem Eng J 28:237–242. doi:10.1016/j.bej.2005.11.007 CrossRefGoogle Scholar
  16. Cox HHJ, Deshusses MA (2001) Biotrickling Filters. In: Kennes C, Veiga MC (eds) Bioreact. Waste Gas Treat. Kluwer, Dordrecht, pp 99–131CrossRefGoogle Scholar
  17. Darracq G, Couvert A, Couriol C et al (2010a) Integrated process for hydrophobic VOC treatment-solvent choice. Can J Chem Eng. doi:10.1002/cjce.20325 Google Scholar
  18. Darracq G, Couvert A, Couriol C et al (2010b) Silicone oil: an effective absorbent for the removal of hydrophobic volatile organic compounds. J Chem Technol Biotechnol 85:309–313. doi:10.1002/jctb.2331 CrossRefGoogle Scholar
  19. Darracq G, Couvert A, Couriol C et al (2012) Activated sludge acclimation for hydrophobic VOC removal in a two-phase partitioning reactor. Water Air Soil Pollut 223:3117–3124. doi:10.1007/s11270-012-1094-8 CrossRefGoogle Scholar
  20. Daugulis AJ (2001) Two-phase partitioning bioreactors: a new technology platform for destroying xenobiotics. Trends Biotechnol 19:457–462. doi:10.1016/S0167-7799(01)01789-9 CrossRefGoogle Scholar
  21. Daugulis AJ, Tomei MC, Guieysse B (2011) Overcoming substrate inhibition during biological treatment of monoaromatics: recent advances in bioprocess design. Appl Microbiol Biotechnol 90:1589–1608. doi:10.1007/s00253-011-3229-z CrossRefGoogle Scholar
  22. Davidson CT, Daugulis AJ (2003) Addressing biofilter limitations: a two-phase partitioning bioreactor process for the treatment of benzene and toluene contaminated gas streams. Biodegradation 14:415–421. doi:10.1023/A:1027363526518 CrossRefGoogle Scholar
  23. Delhoménie M-C, Heitz M (2005) Biofiltration of air: a review. Crit Rev Biotechnol 25:53–72. doi:10.1080/07388550590935814 CrossRefGoogle Scholar
  24. Djeribi R, Dezenclos T, Pauss A, Lebeault J-M (2005) Removal of styrene from waste gas using a biological trickling filter. Eng Life Sci 5:450–457. doi:10.1002/elsc.200520092 CrossRefGoogle Scholar
  25. Dorado AD, Dumont E, Muñoz R, Quijano G (2015) A novel mathematical approach for the understanding and optimization of two-phase partitioning bioreactors devoted to air pollution control. Chem Eng J 263:239–248. doi:10.1016/j.cej.2014.11.014 CrossRefGoogle Scholar
  26. Dumont E, Andrès Y (2012) Styrene absorption in water/silicone oil mixtures. Chem Eng J 200–202:81–90. doi:10.1016/j.cej.2012.06.028 CrossRefGoogle Scholar
  27. Dumont E, Andrès Y, Le Cloirec P (2006) Effect of organic solvents on oxygen mass transfer in multiphase systems: application to bioreactors in environmental protection. Biochem Eng J 30:245–252. doi:10.1016/j.bej.2006.05.003 CrossRefGoogle Scholar
  28. Dumont E, Andrès Y, Le Cloirec P (2014) Mass transfer coefficients of styrene into water/silicone oil mixtures: new interpretation using the “equivalent absorption capacity” concept. Chem Eng J 237:236–241. doi:10.1016/j.cej.2013.10.021 CrossRefGoogle Scholar
  29. Easter C, Quigley C, Burrowes P et al (2005) Odor and air emissions control using biotechnology for both collection and wastewater treatment systems. Chem Eng J 113:93–104. doi:10.1016/j.cej.2005.04.007 CrossRefGoogle Scholar
  30. EEA, European Environmental Agency (2014) European Union emission inventory report 1990–2012 under the UNECE Convention on Long-range Transboundary Air Pollution (LRTAP). http://www.eea.europa.eu/publications/lrtap-2014
  31. Estrada JM, Kraakman NJRB, Lebrero R, Muñoz R (2012) A sensitivity analysis of process design parameters, commodity prices and robustness on the economics of odour abatement technologies. Biotechnol Adv 30:1354–1363. doi:10.1016/j.biotechadv.2012.02.010 CrossRefGoogle Scholar
  32. Estrada JM, Kraakman NJRB, Muñoz R, Lebrero R (2011) A comparative analysis of odour treatment technologies in wastewater treatment plants. Environ Sci Technol 45:1100–1106. doi:10.1021/es103478j CrossRefGoogle Scholar
  33. Estrada JM, Lebrero R, Quijano G et al (2015) Odour abatement technologies in WWTP: energetic and economic efficiency. In: Tsagarakis KP, Stamatelatou K (eds) Sewage Treatment Plants: economic evaluation of innovative technologies for energy efficiency. IWA Publishing, London, pp 163–187Google Scholar
  34. EUPO (2007) Directive 2004/42/CE of the European Parliament and the Council. In: Eur. Union Publ. Off. http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2004:143:0087:0096:EN:PDF
  35. Fam H, Daugulis AJ (2013) Two-phase partitioning bioreactors. In: Kennes C, Veiga MC (eds) Air pollution prevention and control: bioreactors and bioenergy. Wiley, Chichester, UK, pp 185–205CrossRefGoogle Scholar
  36. Fazaelipoor MH, Shojaosadati SA (2002) The effect of silicone oil on biofiltration of hydrophobic compounds. Environ Prog 21:221–224. doi:10.1002/ep.670210410 CrossRefGoogle Scholar
  37. Gabriel D, Deshusses MA (2003) Performance of a full-scale biotrickling filter treating H2S at a gas contact time of 1.6 to 2.2 seconds. Environ Prog 22:111–118. doi:10.1002/ep.670220213 CrossRefGoogle Scholar
  38. Guieysse B, Cirne MDTG, Mattiasson B (2001) Microbial degradation of phenanthrene and pyrene in a two-liquid phase-partitioning bioreactor. Appl Microbiol Biotechnol 56:796–802. doi:10.1007/s002530100706 CrossRefGoogle Scholar
  39. Hansen N, Rindel K (2000) Bioscrubbing, an effective and economic solution to odour control at wastewater treatment plants. Water Sci Technol 41:155–164Google Scholar
  40. Harz M, Knoche M (2001) Droplet sizing using silicone oils. Crop Prot 20:489–498. doi:10.1016/S0261-2194(01)00014-X CrossRefGoogle Scholar
  41. Hashemi SF, Goharrizi AS, Fazaelipoor MH (2012) Two liquid-phase bubble column bioreactors for the removal of volatile organic compounds from air streams. Asia-Pacific J Chem Eng 7:442–447. doi:10.1002/apj.591 CrossRefGoogle Scholar
  42. Hernández M, Muñoz R (2011) Long-term influence of the presence of a non-aqueous phase on the cell surface hydrophobicity of Pseudomonas in two-phase partitioning bioreactors. Appl Microbiol Biotechnol 89:1573–1581. doi:10.1007/s00253-010-2975-7 CrossRefGoogle Scholar
  43. Hernández M, Muñoz R, Daugulis AJ (2011a) Biodegradation of VOC mixtures of different hydrophobicities in two-phase partitioning bioreactors containing tailored polymer mixtures. J Chem Technol Biotechnol 86:138–144. doi:10.1002/jctb.2496 CrossRefGoogle Scholar
  44. Hernández M, Quijano G, Muñoz R, Bordel S (2011b) Modeling of VOC mass transfer in two-liquid phase stirred tank, biotrickling filter and airlift reactors. Chem Eng J 172:961–969. doi:10.1016/j.cej.2011.07.008 CrossRefGoogle Scholar
  45. Hernández M, Quijano G, Muñoz R (2012) Key role of microbial characteristics on the performance of VOC biodegradation in two-liquid phase bioreactors. Environ Sci Technol 46:4059–4066. doi:10.1021/es204144c CrossRefGoogle Scholar
  46. Hernández M, Quijano G, Thalasso F et al (2010) A comparative study of solid and liquid non-aqueous phases for the biodegradation of hexane in two-phase partitioning bioreactors. Biotechnol Bioeng 106:731–740. doi:10.1002/bit.22748 CrossRefGoogle Scholar
  47. Jacquemin J, Husson P, Padua AAH, Majer V (2006) Density and viscosity of several pure and water-saturated ionic liquids. Green Chem 8:172–180. doi:10.1039/B513231B CrossRefGoogle Scholar
  48. Kampa M, Castanas E (2008) Human health effects of air pollution. Environ Pollut 151:362–367. doi:10.1016/j.envpol.2007.06.012 CrossRefGoogle Scholar
  49. Kennes C, Abubackar HN, Veiga MC (2013) Biodegradation and bioconversion of volatile pollutants. In: Kennes C, Veiga MC (eds) Air pollution prevention and control: bioreactors and bioenergy. Wiley, Chichester, pp 19–30CrossRefGoogle Scholar
  50. Kennes C, Thalasso F (1998) Review: waste gas biotreatment technology. J Chem Technol Biotechnol 72:303–319. doi:10.1002/(SICI)1097-4660(199808)72:4<303:AID-JCTB903>3.0.CO;2-Y CrossRefGoogle Scholar
  51. Kennes C, Veiga MC (2013) Introduction to air pollution. In: Kennes C, Veiga MC (eds) Air pollution prevention and control: bioreactors and bioenergy. Wiley, Chichester, UK, pp 3–18CrossRefGoogle Scholar
  52. Khammar N, Malhautier L, Degrange V et al (2005) Link between spatial structure of microbial communities and degradation of a complex mixture of volatile organic compounds in peat biofilters. J Appl Microbiol 98:476–490. doi:10.1111/j.1365-2672.2004.02474.x CrossRefGoogle Scholar
  53. Khan FI, Ghoshal AK (2000) Removal of volatile organic compounds from polluted air. J Loss Prev Process Ind 13:527–545. doi:10.1016/S0950-4230(00)00007-3 CrossRefGoogle Scholar
  54. Kraakman NJR, Cesca J (2012) Evaluating odour control technology using reliability and sustainability criteria. Water 65–70, NovemberGoogle Scholar
  55. Kraakman NJR, Rocha-Rios J, van Loosdrecht MCM (2011) Review of mass transfer aspects for biological gas treatment. Appl Microbiol Biotechnol 91:873–886. doi:10.1007/s00253-011-3365-5 CrossRefGoogle Scholar
  56. Lebrero R, Bouchy L, Stuetz R, Muñoz R (2011) Odor assessment and management in wastewater treatment plants: a review. Crit Rev Environ Sci Technol 41:915–950. doi:10.1080/10643380903300000 CrossRefGoogle Scholar
  57. Lebrero R, Hernández M, Quijano G, Muñoz R (2014) Hexane biodegradation in two-liquid phase biofilters operated with hydrophobic biomass: effect of the organic phase-packing media ratio and the irrigation rate. Chem Eng J 237:162–168. doi:10.1016/j.cej.2013.10.016 CrossRefGoogle Scholar
  58. Lippmann M (1989) Health effects of ozone a critical review. JAPCA 39:672–695. doi:10.1080/08940630.1989.10466554 CrossRefGoogle Scholar
  59. Littlejohns JV, Daugulis AJ (2009) A two-phase partitioning airlift bioreactor for the treatment of BTEX contaminated gases. Biotechnol Bioeng 103:1077–1086. doi:10.1002/bit.22343 CrossRefGoogle Scholar
  60. López JC, Quijano G, Pérez R, Muñoz R (2014) Assessing the influence of CH4 concentration during culture enrichment on the biodegradation kinetics and population structure. J Environ Manage 146:116–123. doi:10.1016/j.jenvman.2014.06.026 CrossRefGoogle Scholar
  61. MacLeod CT, Daugulis AJ (2005) Interfacial effects in a two-phase partitioning bioreactor: degradation of polycyclic aromatic hydrocarbons (PAHs) by a hydrophobic Mycobacterium. Process Biochem 40:1799–1805. doi:10.1016/j.procbio.2004.06.042 CrossRefGoogle Scholar
  62. Malhautier L, Khammar N, Bayle S, Fanlo J-L (2005) Biofiltration of volatile organic compounds. Appl Microbiol Biotechnol 68:16–22. doi:10.1007/s00253-005-1960-z CrossRefGoogle Scholar
  63. Melgarejo-Torres R, Castillo-Araiza CO, Dutta A et al (2015) Mathematical model of a three phase partitioning bioreactor for conversion of ketones using whole cells. Chem Eng J 260:765–775. doi:10.1016/j.cej.2014.08.097 CrossRefGoogle Scholar
  64. Montes M, Daugulis AJ, Veiga MC, Kennes C (2011) Characterization of absorbent polymers for the removal of volatile hydrophobic pollutants from air. J Chem Technol Biotechnol 86:47–53. doi:10.1002/jctb.2517 CrossRefGoogle Scholar
  65. Montes M, Veiga MC, Kennes C (2010) Two-liquid-phase mesophilic and thermophilic biotrickling filters for the biodegradation of alpha-pinene. Bioresour Technol 101:9493–9499. doi:10.1016/j.biortech.2010.07.101 CrossRefGoogle Scholar
  66. Morrish JLE, Daugulis AJ (2008) Improved reactor performance and operability in the biotransformation of carveol to carvone using a solid-liquid two-phase partitioning bioreactor. Biotechnol Bioeng 101:946–956. doi:10.1002/bit.21957 CrossRefGoogle Scholar
  67. Muñoz R, Arriaga S, Hernández S et al (2006) Enhanced hexane biodegradation in a two phase partitioning bioreactor: overcoming pollutant transport limitations. Process Biochem 41:1614–1619. doi:10.1016/j.procbio.2006.03.007 CrossRefGoogle Scholar
  68. Muñoz R, Chambaud M, Bordel S, Villaverde S (2008) A systematic selection of the non-aqueous phase in a bacterial two liquid phase bioreactor treating alpha-pinene. Appl Microbiol Biotechnol 79:33–41. doi:10.1007/s00253-008-1400-y CrossRefGoogle Scholar
  69. Muñoz R, Daugulis AJ, Hernández M, Quijano G (2012) Recent advances in two-phase partitioning bioreactors for the treatment of volatile organic compounds. Biotechnol Adv 30:1707–1720. doi:10.1016/j.biotechadv.2012.08.009 CrossRefGoogle Scholar
  70. Muñoz R, Gan EIHH, Hernández M, Quijano G (2013) Hexane biodegradation in two-liquid phase bioreactors: High-performance operation based on the use of hydrophobic biomass. Biochem Eng J 70:9–16. doi:10.1016/j.bej.2012.09.009 CrossRefGoogle Scholar
  71. Muñoz R, Villaverde S, Guieysse B, Revah S (2007) Two-phase partitioning bioreactors for treatment of volatile organic compounds. Biotechnol Adv 25:410–422. doi:10.1016/j.biotechadv.2007.03.005 CrossRefGoogle Scholar
  72. Nielsen DR, Sask KN, McLellan PJ, Daugulis AJ (2006) Benzene vapor treatment using a two-phase partitioning bioscrubber: an improved steady-state protocol to enhance long-term operation. Bioprocess Biosyst Eng 29:229–240. doi:10.1007/s00449-006-0071-2 CrossRefGoogle Scholar
  73. Noyola A, Morgan-Sagastume JM, López-Hernández JE (2006) Treatment of biogas produced in anaerobic reactors for domestic wastewater: odor control and energy/resource recovery. Rev Environ Sci Bio/Technol 5:93–114. doi:10.1007/s11157-005-2754-6 CrossRefGoogle Scholar
  74. Ordaz A, López JC, Figueroa-González I et al (2014) Assessment of methane biodegradation kinetics in two-phase partitioning bioreactors by pulse respirometry. Water Res 67C:46–54. doi:10.1016/j.watres.2014.08.054 CrossRefGoogle Scholar
  75. Ostojic NL (1992) Activated sludge treatment for odor control. Biocycle 33:74Google Scholar
  76. Ottengraf SP, Van Den Oever AH (1983) Kinetics of organic compound removal from waste gases with a biological filter. Biotechnol Bioeng 25:3089–3102. doi:10.1002/bit.260251222 CrossRefGoogle Scholar
  77. Pérez MC, Alvarez-Hornos FJ, Portune K, Gabaldón C (2014) Abatement of styrene waste gas emission by biofilter and biotrickling filter: comparison of packing materials and inoculation procedures. Appl Microbiol Biotechnol. doi:10.1007/s00253-014-5773-9 Google Scholar
  78. Popov VO, Bezborodov AM, Cavanagh M, Cross P (2004) Evaluation of industrial biotrickling filter at the flexographic printing facility. Environ Prog 23:39–44. doi:10.1002/ep.10005 CrossRefGoogle Scholar
  79. Quijano G, Chávez-Avila R, Muñoz R et al (2010a) KLa measurement in two-phase partitioning bioreactors: new insights on potential errors at low power input. J Chem Technol Biotechnol 85:1407–1412. doi:10.1002/jctb.2460 CrossRefGoogle Scholar
  80. Quijano G, Couvert A, Amrane A (2010b) Ionic liquids: applications and future trends in bioreactor technology. Bioresour Technol 101:8923–8930. doi:10.1016/j.biortech.2010.06.161 CrossRefGoogle Scholar
  81. Quijano G, Couvert A, Amrane A et al (2011) Potential of ionic liquids for VOC absorption and biodegradation in multiphase systems. Chem Eng Sci 66:2707–2712. doi:10.1016/j.ces.2011.01.047 CrossRefGoogle Scholar
  82. Quijano G, Hernandez M, Thalasso F et al (2009a) Two-phase partitioning bioreactors in environmental biotechnology. Appl Microbiol Biotechnol 84:829–846. doi:10.1007/s00253-009-2158-6 CrossRefGoogle Scholar
  83. Quijano G, Revah S, Gutiérrez-Rojas M et al (2009b) Oxygen transfer in three-phase airlift and stirred tank reactors using silicone oil as transfer vector. Process Biochem 44:619–624. doi:10.1016/j.procbio.2009.01.015 CrossRefGoogle Scholar
  84. Quijano G, Hernandez M, Villaverde S et al (2010c) A step-forward in the characterization and potential applications of solid and liquid oxygen transfer vectors. Appl Microbiol Biotechnol 85:543–551. doi:10.1007/s00253-009-2146-x CrossRefGoogle Scholar
  85. Quijano G, Ordaz A, Muñoz R, Thalasso F (2010d) New insights on O2 uptake mechanisms in two-phase partitioning bioreactors. Biotechnol Lett 32:223–228. doi:10.1007/s10529-009-0146-7 CrossRefGoogle Scholar
  86. Quijano G, Rocha-Ríos J, Hernández M et al (2010e) Determining the effect of solid and liquid vectors on the gaseous interfacial area and oxygen transfer rates in two-phase partitioning bioreactors. J Hazard Mater 175:1085–1089. doi:10.1016/j.jhazmat.2009.10.020 CrossRefGoogle Scholar
  87. Ravindra K, Sokhi R, Van Grieken R (2008) Atmospheric polycyclic aromatic hydrocarbons: source attribution, emission factors and regulation. Atmos Environ 42:2895–2921. doi:10.1016/j.atmosenv.2007.12.010 CrossRefGoogle Scholar
  88. Rene ER, Veiga MC, Kennes C (2013) Biofilters. In: Kennes C, Veiga MC (eds) Air pollution prevention and control: bioreactors and bioenergy. Wiley, Chichester, pp 59–119Google Scholar
  89. Revah S, Morgan-Sagastume JM (2005) Biotechnology for odor and air pollution control. In: Shareefdeen Z, Singh A (eds) Biotechnology for odor and air pollution control. Springer, Berlin, pp 29–63CrossRefGoogle Scholar
  90. Rocha-Rios J, Bordel S, Hernández S, Revah S (2009) Methane degradation in two-phase partition bioreactors. Chem Eng J 152:289–292. doi:10.1016/j.cej.2009.04.028 CrossRefGoogle Scholar
  91. Rocha-Rios J, Quijano G, Thalasso F et al (2011) Methane biodegradation in a two-phase partition internal loop airlift reactor with gas recirculation. J Chem Technol Biotechnol 86:353–360. doi:10.1002/jctb.2523 CrossRefGoogle Scholar
  92. Sander R (1999) Compilation of Henry’s law constants for inorganic and organic species of potential importance in environmental chemistry. http://www.henrys-law.org/henry.pdf. Accessed 6 Nov 2014
  93. Schnelle JKB, Brown CA (2001) Air pollution control technology handbook. Florida, Boca RatonCrossRefGoogle Scholar
  94. Stuetz RM, Gostelow P, Burgess JE (2001) Odour perception. In: Stuetz RM, Frechen FB (eds) Odours wastewater treat Meas. Model. Control. IWA Publishing, London, pp 1–13Google Scholar
  95. UNEP (2006) Screening Information Datasets (SIDS) for high volume chemicals. In: United Nations Environ. Program.—Chem. Branch. http://www.chem.unep.ch/irptc/sids/OECDSIDS/. Accessed 20 May 2003
  96. USEPA (2015) US Environmental Protection Agency - Air Toxics Web Site. http://www.epa.gov/airtoxics/. Accessed 1 Mar 2015
  97. Van Groenestijn JW, Lake ME (1999) Elimination of alkanes from off-gases using biotrickling filters containing two liquid phases. Environ Prog 18:151–155. doi:10.1002/ep.670180310 CrossRefGoogle Scholar
  98. Vuong M-D, Couvert A, Couriol C et al (2009) Determination of the Henry’s constant and the mass transfer rate of VOCs in solvents. Chem Eng J 150:426–430. doi:10.1016/j.cej.2009.01.027 CrossRefGoogle Scholar
  99. Wagner M, Loy A, Nogueira R et al (2002) Microbial community composition and function in wastewater treatment plants. Antonie Van Leeuwenhoek 81:665–680. doi:10.1023/A:1020586312170 CrossRefGoogle Scholar
  100. Witherspoon J, Easter C, Voigt R et al (2008) An odor control master planning approach to public outreach programs. Proceeding of 3rd IWA international conference of Odour VOCs. Meas. Regul. Control Tech. 2006:Google Scholar
  101. Wu XM, Apte MG, Maddalena R, Bennett DH (2011) Volatile organic compounds in small- and medium-sized commercial buildings in California. Environ Sci Technol 45:9075–9083. doi:10.1021/es202132u CrossRefGoogle Scholar
  102. Yeom SH, Daugulis AJ (2001) Development of a novel bioreactor system for treatment of gaseous benzene. Biotechnol Bioeng 72:156–165CrossRefGoogle Scholar
  103. Yeom SH, Daugulis AJ, Nielsen DR (2010) A strategic approach for the design and operation of two-phase partitioning bioscrubbers for the treatment of volatile organic compounds. Biotechnol Prog 26:1777–1786. doi:10.1002/btpr.481 CrossRefGoogle Scholar
  104. Yoshino K, Schmidt WF (2014) Ion mobilities in poly-dimethylsiloxane silicone oils. IEEE international Conference on Liquids Dielectric Curran Associates, Inc., Bled, Slovenia, pp 123–126Google Scholar

Copyright information

© Springer Science+Business Media Singapore 2017

Authors and Affiliations

  • Guillermo Quijano
    • 1
  • José A. Miguel-Romera
    • 2
  • Luis M. Bonilla-Morte
    • 3
  • Ivonne Figueroa-González
    • 1
  1. 1.Department of Chemical Engineering and Environmental Technology, Agrarian Engineering SchoolUniversity of ValladolidSoriaSpain
  2. 2.Department of Agroforestry Sciences, Agrarian Engineering SchoolUniversity of ValladolidSoriaSpain
  3. 3.Department of Agricultural and Forestry Engineering, Agrarian Engineering SchoolUniversity of ValladolidSoriaSpain

Personalised recommendations