Skip to main content

HC-0B-06: Biodegradation of Hydrocarbons

  • Chapter
  • First Online:
Book cover Biodegradation and Bioconversion of Hydrocarbons

Abstract

Hydrocarbons and associated derivatives are unavoidably common in the environment. The use of crude oils, petrol, diesel, heavy oils, lubricants etc. has continued to cause widespread aquatic, terrestrial and even atmospheric pollution. Considering the importance of hydrocarbons in various industries, its occurrence in natural and blended forms is inevitable. However, possible recovery of systems contaminated with hydrocarbons has given rise to the interest on the degradation of hydrocarbons, especially in a biologically-driven process known as biodegradation. Therefore, the Chapter will provide an overview of the basic behaviour of hydrocarbons in the environment, chances of biological degradation and factors pivotal for biodegradability. Similarly, among other issues related to biodegradation of hydrocarbons, the core remediation techniques (bio-, chemico-, and physico-treatments) adopted in most hydrocarbon biodegradability ventures are evaluated alongside the evaluation of the mechanisms of degradation. The use of plant technology in the remediation of polluted sites often referred to as phytoremediation is one of the options employed for the bio-recovery of hydrocarbon-impacted systems due to the various mechanisms involved. Therefore, regardless of the fact that some phyisco-chemically driven processes of hydrocarbon removal are abundantly used at some contaminated sites, none has been as green, cost effective and sustainable like the adoption of a biodegradation process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abioye OP, Agamuthu P, Abdul Aziz AR (2012) Biodegradation of Used Motor Oil in Soil Using Organic Waste Amendments. Biotechnol Res Int 2012:8. doi:10.1155/2012/587041

    Article  Google Scholar 

  • Abioye OP, Alonge OA, Ijah UJJ (2009) Biodegradation of Crude Oil in Soil Amended with Melon Shell. AU J Technol 13(1):35–38

    Google Scholar 

  • Adams N, Carroll D, Madalinski, K, Rock, S, Wilson T, Pivetz B (2000) Introduction to phytoremediation. National Risk Management Research Laboratory. Office of Research and Development. US EPA Cincinnati, Ohio. EPA/600/R-99/107

    Google Scholar 

  • Adesodun JK, Mbagwu JSC (2008) Biodegradation of waste-lubricating petroleum oil in a tropical alfisol as mediated by animal droppings. Bioresour Technol 99(13):5659–5665

    Article  CAS  Google Scholar 

  • Afuwale CD, Modi HA (2012) Preparation of bacterial consortium for enhancing degradation of crude oil. J Adv Dev Res 3:63–69

    Google Scholar 

  • Ahmed AM (2004) Psychrophilic degradation of long chain alkanes. der Technischen Universität Hamburg-Harburg

    Google Scholar 

  • Aislabie J, Saul DJ, Foght JM (2006) Bioremediation of hydrocarbon-contaminated polar soils. Extremophiles 10:171–179

    Article  CAS  Google Scholar 

  • Angelidaki I, Sanders W (2004) Assessment of the anaerobic biodegradability of macropollutants. Rev Environ Sci Bio/Technol 3:117–129

    Article  CAS  Google Scholar 

  • Atlas R, Bragg J (2009) Bioremediation of marine oil spills: when and when not—the Exxon Valdez experience. Microb Biotechnol 2(2):213–221. doi:10.1111/j.1751-7915.2008.00079.x

    Article  CAS  Google Scholar 

  • Baraniecki CA, Aislabie J, Foght JM (2002) Characterization of Sphingomonas sp. Ant 17, an aromatic hydrocarbon-degrading bacterium isolated from Antarctic soil. Microb Ecol 43:44–54

    Article  CAS  Google Scholar 

  • Bartha R, Bossert I (1984) Petroleum microbiology. In: Atlas RM (ed) The treatment and disposal of petroleum refinery wastes. Macmillan, New York, pp 553–557

    Google Scholar 

  • Bej AK, Saul D, Aislabie J (2001) Cold-tolerant alkane-degrading Rhodococcus species from Antarctica. Polar Biol 23:100–105

    Article  Google Scholar 

  • Ben Ayed H, Jridi M, Maalej H, Nasri M, Hmidet N (2014) Characterization and stability of biosurfactant produced by Bacillus mojavensisA21 and its application in enhancing solubility of hydrocarbon. J Chem Tech Biotech. 89:1007–1014

    Google Scholar 

  • Bento FM, Beech IB, Gaylarde CC, Englert GE, Muller IL (2005) Degradation and corrosive activities of fungi in a diesel–mild steel–aqueous system. World J Microb Biotech 21(2):135–142

    Article  Google Scholar 

  • Boonchan S, Britz ML, Stanley GA (2000) Degradation and Mineraliza-tion of high molecular weight polycyclic aromatic hydrocarbons by defined fungal bacterial cocultures. Appl Environ Microb 66(3):1007–1019

    Article  CAS  Google Scholar 

  • Boopathy R (2000) Factors limiting bioremediation technologies. Bioresour Technol 74:63–67

    Article  CAS  Google Scholar 

  • Brown RA, Norris RD (1994) The evolution of a technology: hydrogen peroxide in In-situ bioremediation. In: Hinchee RE, Alleman BC, Hoeppel RE, Miller RN (eds) Hydrocarbon bioremediation. CRC Press, Boca Raton, pp 148–162

    Google Scholar 

  • Brown ED, Norcross BL, Short JW (1996) An introduction to studies on the effects of Exxon valdez oil spill in early life history stages of Pacific herring,(clupae pallasi), in Prince Williian Sound, Alaska. Can J Fish Aquat Sci 53:2337–2342

    Google Scholar 

  • Cao B, Nagarajan K, Loh K (2009) Biodegradation of aromatic compound: current status and opportunities for biomolecular approaches. Appl Microb Biotechnol Adv 85:207–228

    Article  CAS  Google Scholar 

  • Chaillan F, Chaıneau CH, Point V, Saliot A, Oudot J (2006) Factors inhibiting bioremediation of soil contaminated with weathered oils and drill cuttings. Environ Pollut 144:228–237

    Article  Google Scholar 

  • Chaineau CH, Morel JL, Oudot J (2000) Biodegradation of fuel oil hydrocarbons in the rhizosphere of maize. J Environ Qual 29:569–578

    Article  CAS  Google Scholar 

  • Chakraborty R, Coates JD (2004) Anaerobic degradation of monoaromatic hydrocarbons. Appl Microb Biotechnol 64:437–446

    Article  CAS  Google Scholar 

  • Colla T, Andreazza R, Bücker F, Souza M, Tramontini L, Prado G, Frazzon A, Camargo F, Bento F (2014) Bioremediation assessment of diesel–biodiesel-contaminated soil using an alternative bioaugmentation strategy. Environ Sci Pollut Res 21:2592–2602

    Article  CAS  Google Scholar 

  • Chrzanowski Ł, Kaczorek E, Olszanowski A (2006) The ability of Candida Maltosa for hydrocarbon and emulsified hydrocarbon degradation. Polish J Environ Stud 15(1):47–51

    CAS  Google Scholar 

  • Collins CD (2007) Implementing phytoremediation of petroleum hydrocarbons. In: Willey N (ed) phytoremediation: methods and reviews, vol 23. Wiley-Blackwell, Totowa, p 512

    Chapter  Google Scholar 

  • Colombo JC, Cabello M, Arambarri AM (1996) Biodegradation of aliphatic and aromatic hydrocarbons by natural soil microflora and pure cultures of imperfect and lignolitic fungi. Environ Pollut 94(3):355–362

    Article  CAS  Google Scholar 

  • Dadrasnia A, Agamuthu P (2014) Diesel toxicity and soil remediation—technical report. Malays J Sci 33(2):92–97

    Google Scholar 

  • Dadrasnia A, Agamuthu P (2013) Diesel fuel degradation from contaminated soil by Dracaena reflexa using organic waste supplementation. Int J Jpn Petrol Inst 56(4):236–243

    Article  Google Scholar 

  • Dadrasnia A, Usman MM, Wei KSC, Velappan RD, Jamali H, Mohebi N, Salmah I (2016) Native soil bacterial isolate in Malaysia exhibit promising supplements on degrading organic pollutants. Proc Safet Environ Prot 100:264–271

    Google Scholar 

  • Das N, Chandran P (2011) Microbial degradation of petroleum hydrocarbon contaminants: an overview. Biotechnol Res Int. doi:10.4061/2011/941810

    Google Scholar 

  • Delille D (2000) Response of Antarctic soil assemblages to contamination by diesel fuel and crude oil. Microb Ecol 40:159–168

    CAS  Google Scholar 

  • Díaz-Ramírez I, Escalante-Espinosa E, Schroeder RA, FócilMonterrubio R, Ramírez-Saad Hugo (2013) Hydrocarbon biodegradation potential of native and exogenous microbial inocula in Mexican tropical soils. Biodegrad Hazard Spec Prod. doi:10.5772/56233

    Google Scholar 

  • Doelman P, Breedveld G (1999) In situ versus on site practices. In: Andriano, D. C, Bollag, J. M, Frankenberger, W. T. Jr, Sims, R. C. (Eds) Bioremediation of contaminated soils. Agronomy No. 37, American Society of Agronomy, Inc. Soil Science Society of America, Inc. Madison, Wisconsin, USA p. 539–558

    Google Scholar 

  • Doelman P, Breedveld G (1999) In-situ versus on site practices. In Adriano DC, Bollang JM, Frankenberger WT, Sims RC (eds) Bioremediation of contaminated soils. Agronomy No. 37 American Society of Agronomy Inc Crop Science Society of America, Inc. Soil Science Society of America, Inc Madison, Wisconsin, pp 539–558

    Google Scholar 

  • Eckford R, Cook FD, Saul D, Aislabie J, Foght J (2002) Free-living heterotrophic nitrogen-fixing bacteria isolated from fuel-contaminated Antarctic soils. Appl Environ Microb 68:5181–5185

    Article  CAS  Google Scholar 

  • EIA (2011) U.S. Environmental Infirmation Agency, China electricity. http://www.eia.gov/

  • EPA (2006) U.S. Environmental Protection Agency. Integrated Risk Information System website. http://epa.gov/iris/

  • EPA (2005) EPA REACH IT database. Remediation and characterization innovative technologies. Cited http://www.epareachit.org/ April 23rd, 2015

  • EPA (1999) Use of monitored natural attenuation at superfund, RCRA corrective action and underground storage tank sites. OSWER Directive Number 9200.4-17P. United States Environmental Protection Agency, Office of Solid Waste and Emergency Response, Washington

    Google Scholar 

  • Eriksson M, Ka JO, Mohn WW (2001) Effects of low temperature and freeze-thaw cycles on hydrocarbon biodegradation in arctic tundra soil. Appl Environ Microbiol 67(11):5107–5112

    Article  CAS  Google Scholar 

  • Fan MY, Xie RJ, Qin G (2014) Bioremediation of petroleum-contaminated soil by a combined system of biostimulation-bioaugmentation with yeast. Environ Tech. 35(4)

    Google Scholar 

  • Field JA, Alvarez SR (2007) Biodegradability of chlorinated aromatic compounds. University of Arizona, http://www.eurochlor.org/media/14960/8-5-12_sd_biodegradability_aromatic.pdf

  • Foght J (2002) Anaerobic biodegradation of aromatic hydrocarbons: pathways and prospect. J Mol Microbiol Biotechnol 15:93–120

    Article  Google Scholar 

  • Fritsche W, Hofrichter M (2005) Aerobic degradation of recalcitrant organic compounds by microorganisms. In: Jördening H-J, Winter J (Eds) Environmental biotechnology. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 203–227

    Google Scholar 

  • Froehner S, Dombroski L, Machado K, Scapulatempo Fernandes C, Bessa M (2012) Estimation of bioavailability of polycyclic aromatic hydrocarbons in river sediments. Int J Environ Sci Technol 9(3):409–416

    Article  CAS  Google Scholar 

  • FRTR (2005) Federal remediation technologies roundtable remediation screening matrix and reference guide http://www.frtr.gov/matrix2/top_page.html

  • Gavrilescu M (2010) Environmental biotechnology: achievements, opportunities and challenges. In: Dynamic biochemistry, process biotechnology and molecular biology 4(1):1–36

    Google Scholar 

  • George SC, Boreham CJ, Minifie SA, Teerman SC (2002) The effects of minor to moderate biodegradation on C5 to C9 hydrocarbons in crude oils. Org Geochem 33(12):1293–1317 http://www.sciencedirect.com/science/article/pii/S0146638002001171

    Article  CAS  Google Scholar 

  • Gibb A, Chu A, Wong RCK, Goodman RH (2001) Bioremediation kinetics of crude oil at 5 degrees. Canadian Journal of Environmental Engineering 127:818–824

    Article  CAS  Google Scholar 

  • Gong Z, Wilke BM, Alef K, Li P (2005) Influence of soil moisture on sunflower oil extraction of polycyclic aromatic hydrocarbons from a manufactured gas plant soil. Sci Total Environ 343(1–3):51–59

    Article  CAS  Google Scholar 

  • Harekrushna S, Kumar DC (2012) A review on: bioremediation. Int J Res Chem Environ 2(1):13–21

    Google Scholar 

  • Head IM, Jones DM, Roling WFM (2006) Marine microorganisms make a meal of oil. Nat Rev Microbiol 4:173–182

    Article  CAS  Google Scholar 

  • Hickman ZA, Reid BJ (2008) The co-application of earthworms (Dendrobaena veneta) and compost to increase hydrocarbon losses from diesel contaminated soils. Environ Int 34(7):1016–1022

    Article  CAS  Google Scholar 

  • Hidayat A, Tachibbana S (2012) Biodegradation of Aliphatic Hydrocarbon in Three Types of Crude Oil by Fusarium sp. F092 under Stress with Artificial Sea Water. J Environ Sci Technol 5(1):64–73

    Article  CAS  Google Scholar 

  • Huesemann MH, Hausmann TS, Fortman TJ (2004) Does bioavailability limit biodegradation? A comparison of hydrocarbon biodegradation and desorption rates in aged soils. Biodegradation 15(4):261–274

    Article  CAS  Google Scholar 

  • Ijah UJJ, Antai SP (2003) The potential use of chicken-drop micro-organisms for oil spill remediation. Environmentalist 23(1):89–95

    Article  Google Scholar 

  • Jain PK, Gupta VK, Gaur RK, Lowry M, Jaroli DP, Chauhan UK (2011) Bioremediation of petroleum oil contaminated soil and water. Res J Environl Toxic 5:1–26

    Article  CAS  Google Scholar 

  • Philp J, Bamforth S, Singleton I, Atlas R (2005) Environmental pollution and restoration: A role for bioremediation. In Atlas R, Philip J (ed), Bioremediation. ASM Press, Washington, DC, p 1–48. doi:10.1128/9781555817596.ch1

  • Juwarkar A, Singh S, Mudhoo A (2010) A comprehensive overview of elements in bioremediation. Rev Environ Sci Biotechnol 9(3):215–288

    Article  CAS  Google Scholar 

  • Kauppi S (2011) Bioremediation of diesel oil contaminated soil and water. University of Helsinki, Lahti

    Google Scholar 

  • Kauppi S, Sinkkonen A, Romantschuk M (2011) Enhancing bioremediation of diesel-fuel-contaminated soil in a boreal climate: comparison of biostimulation and bioaugmentation. Int Biodeterior Biodegrad 65(2):359–368

    Article  CAS  Google Scholar 

  • Lee EH, Kang YS, Cho KS (2011) Bioremediation of diesel-contaminated soils by natural attenuation, biostimulation and bioaugmentation employing Rhodococcus sp EH831. Korean J Microb Biotech. 39(1):86–92

    Google Scholar 

  • Lee M, Kim MK, Singleton I, Goodfellow M, Lee ST (2006) Enhanced biodegradation of diesel oil by a newly identified Rhodococcus baikonurensis EN3 in the presence of mycolic acid. J Appl Microb 100:325–333

    Article  CAS  Google Scholar 

  • Liu H, Meng F, Tong Y, Chi J (2014) Effect of plant density on phytoremediation of polycyclic aromatic hydrocarbons contaminated sediments with Vallisneria spiralis. Ecol Eng 73:380–385

    Article  Google Scholar 

  • Madsen EL (2002) Report on bioavailability of chemical wastes with respect to the potential for soil bioremediation. Department of Microbiology, Cornell University, Ithaca

    Google Scholar 

  • Mancera-López ME, Esparza-García F, Chávez-Gómez B, Rodríguez-Vázquez R, Saucedo-Castañeda G, Barrera-Cortés J (2008) Bioremediation of an aged hydrocarbon-contaminated soil by a combined system of biostimulation–bioaugmentation with filamentous fungi. Int Biodeterior Biodegrad 61(2):151–160

    Article  Google Scholar 

  • Margesin R, Schinner F (1999) Biodegradation of diesel oil by cold-adapted microorganisms in presence of sodium dodecyl sulfate. Chemosphere 38(15):3463–3472

    Article  CAS  Google Scholar 

  • Margesin R, Schinner F (2001a) Biodegradation and bioremediation of hydrocarbons in extreme environments. Appl Microbiol Biotechnol 56:650–663

    Article  CAS  Google Scholar 

  • Margesin R, Schinner F (2001b) Bioremediation (natural attenuation and biostimulation) of diesel-oil-contaminated soil in an alpine glacier skiing area. Appl Environ Microb 67:3127–3133

    Article  CAS  Google Scholar 

  • Masterson WD, Dzou LIP, Holba AG, Fincannon AL, Ellis L (2001) Evidence for biodegradation and evaporative fractionation in West Sak, Kuparuk and Prudhoe Bay field areas, North Slope, Alaska. Org Geochem 32:411–441

    Article  CAS  Google Scholar 

  • Msmg N, Msmd D (2012) Review paper on—parameters affecting bioremedaition. Int J Life Sci Pharma Res 2(3):77–80

    Google Scholar 

  • Mulligan CN, Yong RN (2004) Natural attenuation of contaminated soils. Environ Int 30:587–601

    Article  CAS  Google Scholar 

  • Northcott GL, Jones KC (2000) Experimental approaches and analytical techniques for determining organic compound bound residues in soil and sediment. Environ Pollut 108:19–43

    Article  CAS  Google Scholar 

  • Nugroho A, Effendi E, Karonta Y (2010) Petroleum degradation in soil by thermophilic bacteria with bopile reactor. Makara Teknol 14(1):43–46

    Google Scholar 

  • Oleszczuk P (2009) Application of three methods used for the evaluation of polycyclic aromatic hydrocarbons (PAHs) bioaccessibility for sewage sludge composting. Bioresour Technol 100(1):413–420

    Article  CAS  Google Scholar 

  • Olson PE, Reardon KF, Pilon-Smits EAH (2003) Ecology of rhizosphere bioremediation. In: Mccutcheon S, Schnoor J (eds) Phytoremediation: transformation and control of contaminants. Wiley, Hoboken, pp 317–353

    Chapter  Google Scholar 

  • Onwurah INE, Ogugua VN, Onyike NB, Ochonogor AE, Otitoju OF (2007) Crude oil spills in the environment, effects and some innovative clean-up biotechnologies. Int J Environ Res 1(4):307–320

    CAS  Google Scholar 

  • Pallasser RJ (2000) Recognizing biodegradation in gas/oil accumulations through the data C-13 compositions of gas components. Org Geochem 31:1363–1373

    Article  CAS  Google Scholar 

  • Pandey B, Fulekar M (2012) Bioremediation technology: a new horizon for environmental cleanup. Biol Med 4(1):51–59

    Google Scholar 

  • Park JA, Hur JM, Jang BK, Son BS (2001) Evaluation of compost addition and its effect on biodegradation of diesel oil in contaminated soil composting. J Ind Eng Chem 7(3):127–136

    CAS  Google Scholar 

  • Pelletier E, Delille D, Delille B (2004) Crude oil bioremediation in sub-Antarctic intertidal sediments: chemistry and toxicity of oiled residues. Mar Environ Res 57(4):311–327

    Article  CAS  Google Scholar 

  • Pirnay JP, De Vos D, Cochez C, Bilocq F, Pirson J, Struelens M, Duinslaeger L, Cornelis P, Zizi M, Vanderkelen A (2003) Molecular epidemiology of Pseudomonas aeruginosa colonization in a burn unit: persistence of a multidrug-resistant clone and a silver sulfadiazine-resistant clone. J Clin Microbiol 41(3):1192–1202

    Article  CAS  Google Scholar 

  • Puglisi E, Cappa F, Fragoulis G, Trevisan M, Del Re A (2007) Bioavailability and degradation of phenanthrene in compost amended soils. Chemosphere 67:548–556

    Article  CAS  Google Scholar 

  • Rahman KSM, Thahira RJ, Laksh P, Banat IM (2002) Towards efficient crude oil degradation by a mixed bacterial consortium. Bioresour Technol 85(3):257–261

    Article  CAS  Google Scholar 

  • Renner R (1998) Intrinsic remediation under the microscope. Environ Sci Technol 32(7):180A–182A

    Article  CAS  Google Scholar 

  • Rittmann B (2000) Natural attenuation’s promise and application. Water 21:20–21 https://asu.pure.elsevier.com/en/publications/natural-attenuations-promise-and-application

    Google Scholar 

  • Rittmann BE (2004) Definition, objectives and evaluation of natural attenuation. Biodegradation 15:349–357

    Article  Google Scholar 

  • Rojo F (2009) Degradation of alkanes by bacteria. Environ Microbiol 11(10):2477–2490

    Article  CAS  Google Scholar 

  • Ron EZ, Rosenberg E (2002) Biosurfactants and oil bioremediation. Curr Opin Biotechnol 3:249–252

    Article  Google Scholar 

  • Roy JI (1997) Environmental contaminants encyclopedia diesel oil entry. National Park Service, Colorado

    Google Scholar 

  • Salminen JM, Tuomi PM, Suortti AM, Jorgensen KS (2004) Potential for aerobic and anaerobic biodegradation of hydrocarbons in boreal subsurface. Biodegradation 15:29–39

    Article  CAS  Google Scholar 

  • Schein A, Scott JB, Mos L, Hodson PV (2009) Oil dispersion increases the apparent bioavailability and toxicity of diesel to rainbow trout (Oncorhynchus mykiss). Environ Toxic Chem 28(3):595–602

    Article  CAS  Google Scholar 

  • Schlegel HG (1977) Aeration without air: oxygen supply by hydrogen peroxide. Biotechnol Bioeng 19:413

    Article  CAS  Google Scholar 

  • Semple KT, Morriss AWJ, Paton GI (2003) Bioavailability of hydrophobic organic contaminants in soils: fundamental concepts and techniques for analysis. Eur J Soil Sci 54:809–818

    Article  CAS  Google Scholar 

  • Sihag S, Pathak H, Jaroli DP (2014) Factors affecting the rate of biodegradation of polyaromatic hydrocarbons. Int J Pure Appl Biosci 2(3):185–202

    Google Scholar 

  • Sonia V, Häggblom M, Young LY (2002) Biodegradation of aromatic and aliphatic compounds by rhizobial species. Soil Sci 167(12):802–810

    Article  Google Scholar 

  • Speight JG, Arjoon KK (2012) Bioremediation of petroleum and petroleum products. Scrivener Publishing LLC and Wiley, New York

    Book  Google Scholar 

  • Thibaud C, Erkey C, Akgerman A (1993) Investigation of the effect of moisture on the sorption and desorption of chlorobenzene and toluene from soil. Environ Sci Technol 27(12):2373–2380

    Article  CAS  Google Scholar 

  • Trapp S, Matthies M, Scheunert I, Topp EM (1990) Modelling the bioconcentration of organic chemicals in plants. Environ Sci Technol 24:1246–1253

    Article  CAS  Google Scholar 

  • Van Hamme JD, Singh A, Ward OP (2003) Recent advances in petroleum microbiology. Microb Mol Biol Rev 67(4):503–549

    Article  Google Scholar 

  • Van RM (2011) Environmental degradation of petroleum hydrocarbons. Utrecht University, Binnenstad

    Google Scholar 

  • Walton BT, Guthrie EA, Hoylman AM (1994) Toxicant degradation in the rhizosphere. In: Anderson TA, Coats JR (eds) Bioremediation through rhizosphere technology, ACS symposium series, vol 563. American Chemical Society, Washington, pp 11–26

    Chapter  Google Scholar 

  • Whiticar MJ (1994) Correlation of natural gases with their sources. In: LB Magoon, WG Dow (ed) The petroleum system—from source to trap. AAPG memoir 60. American Association of Petroleum Geologist, Tulsa, pp 261–283

    Google Scholar 

  • Xiao N, Liu R, Jin C, Dai Y (2015) Efficiency of five ornamental plant species in the phytoremediation of polycyclic aromatic hydrocarbon (PAH)-contaminated soil. Ecol Eng 75:384–391

    Article  Google Scholar 

  • Yu R, Hill GA (2006) Bioremediation of polycyclic aromatic hydrocarbon (PAH)-contaminated soils in a roller baffled bioreactor. University of Saskatchewan. Dept Chem Eng. Master thesis, pp 1–149 http://www.collectionscanada.gc.ca/obj/s4/f2/dsk3/SSU/TC-SSU-07182006114607.pdf

  • Zhu X, Venosa AD, Suidan MT (2004) Literature review on the use of commercial bioremediation agents for cleanup of oil-contaminated estuarine environments. U.S. Environmental Protection Agency, Cincinnati 9:1–61 https://www.epa.gov/sites/production/files/2014-10/documents/lit_review_on_the_use_of_commercial_bioremediation.pdf

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arezoo Dadrasnia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Uche, E.C., Dadrasnia, A. (2017). HC-0B-06: Biodegradation of Hydrocarbons. In: Heimann, K., Karthikeyan, O., Muthu, S. (eds) Biodegradation and Bioconversion of Hydrocarbons. Environmental Footprints and Eco-design of Products and Processes. Springer, Singapore. https://doi.org/10.1007/978-981-10-0201-4_3

Download citation

Publish with us

Policies and ethics