Skip to main content

O:H–O Bond Cooperativity

  • Chapter
  • First Online:
The Attribute of Water

Part of the book series: Springer Series in Chemical Physics ((CHEMICAL,volume 113))

  • 1284 Accesses

Abstract

As the basic structure element, hydrogen bond (O:H–O) is universal to all phases of water and ice irrespective geometric configuration or fluctuation order. The O:H–O bond integrates the asymmetric, coupled, short-range intermolecular and intramolecular interactions, whose segmental length and energy respond to stimulations sensitively in a “mater-slave” manner. If one segment shortens and turns to be stiffer, the other will expand and become softer. The O:H nonbond always relaxes more than the H–O bond in length. Such a manner of segmental cooperative relaxation and the associated polarization and bond angle relaxation discriminates ice and water from other substance in responding to stimuli of chemical, electrical, mechanical, thermal, and undercoordination effect, which reconcile almost all detectable properties of water and ice.

The segmented O:HO bond approximates an asymmetrical, H-bridged oscillator pair coupled with OO repulsion, which extends to X:BA short-range interaction in general.

O:HO segmental disparity and OO repulsivity discriminate water and ice from other “normal” substance in responding to perturbation.

When stimulated, O 2 anions relax in the same direction but by different amounts along the O:HO bond.

O:HO bond cooperative relaxation dictates the adaptivity, recoverability, and memory-ability of water and ice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Y. Huang, X. Zhang, Z. Ma, Y. Zhou, W. Zheng, J. Zhou, C.Q. Sun, Hydrogen-bond relaxation dynamics: resolving mysteries of water ice. Coord. Chem. Rev. 285, 109–165 (2015)

    Article  Google Scholar 

  2. Y. Huang, X. Zhang, Z. Ma, Y. Zhou, J. Zhou, W. Zheng, C.Q. Sun, Size, separation, structure order, and mass density of molecules packing in water and ice. Sci. Rep. 3, 3005 (2013)

    ADS  Google Scholar 

  3. G.R. Desiraju, T. Steiner, The Weak Hydrogen Bond: in Structural Chemistry and Biology, vol 9 (Oxford University Press, 2001)

    Google Scholar 

  4. G.R. Desiraju, A bond by any other name. Angew. Chem. Int. Ed. 50, 52–59 (2011)

    Article  Google Scholar 

  5. A. Werner, Ueber Haupt-und Nebenvalenzen und die Constitution der Ammoniumverbindungen. Justus Liebigs Annalen der Chemie 322(3), 261–296 (1902)

    Article  Google Scholar 

  6. A. Hantzsch, Über die Isomerie-Gleichgewichte des Acetessigesters und die sogen. Isorrhopesis seiner Salze. Ber. Dtsch. Chem. Ges. 43(3), 3049–3076 (1910)

    Article  Google Scholar 

  7. P. Pfeiffer, P. Fischer, J. Kuntner, P. Monti, Z. Pros, Zur Theorie der Farblacke. II. Justus Liebigs Annalen der Chemie 398(2), 137–196 (1913)

    Article  Google Scholar 

  8. T.S. Moore, T.F. Winmill, The state of amines in aqueous solution. J. Chem. Soc. Trans. 101, 1635–1676 (1912)

    Article  Google Scholar 

  9. W.M. Latimer, W.H. Rodebush, Polarity and ionization from the standpoint of the Lewis theory of valence. J. Am. Chem. Soc. 42, 1419–1433 (1920)

    Article  Google Scholar 

  10. L. Pauling, The structure and entropy of ice and of other crystals with some randomness of atomic arrangement. J. Am. Chem. Soc. 57, 2680–2684 (1935)

    Article  Google Scholar 

  11. R.B. Corey, The crystal structure of diketopiperazine. J. Am. Chem. Soc. 60(7), 1598–1604 (1938)

    Article  Google Scholar 

  12. G. Albrecht, R.B. Corey, The crystal structure of glycine. J. Am. Chem. Soc. 61(5), 1087–1103 (1939)

    Article  Google Scholar 

  13. F. Senti, D. Harker, The crystal structure of rhombohedral acetamide. J. Am. Chem. Soc. 62(8), 2008–2019 (1940)

    Article  Google Scholar 

  14. L. Pauling, The Nature of the Chemical Bond, 3rd edn. (Cornell University Press, Ithaca, 1960)

    Google Scholar 

  15. C.Q. Sun, Oxidation electronics: bond-band-barrier correlation and its applications. Prog. Mater Sci. 48(6), 521–685 (2003)

    Article  Google Scholar 

  16. G.C. Pimentel, A. McClellan, Hydrogen bonding. Annu. Rev. Phys. Chem. 22(1), 347–385 (1971)

    Article  ADS  Google Scholar 

  17. G.A. Jeffrey, W. Saenger, Hydrogen Bonding in Biological Structures (Springer Science & Business Media, 2012)

    Google Scholar 

  18. T. Steiner, W. Saenger, Role of CH. cntdot. cntdot. cntdot. O hydrogen bonds in the coordination of water molecules. Analysis of neutron diffraction data. J. Am. Chem. Soc. 115(11), 4540–4547 (1993)

    Article  Google Scholar 

  19. A.D. McNaught, A.D. McNaught, Compendium of Chemical Terminology, vol 1669 (Blackwell Science Oxford, 1997)

    Google Scholar 

  20. W.G. Han, C.T. Zhang, A theory of nonlinear stretch vibrations of hydrogen-bonds. J. Phys. Condens. Matter 3(1), 27–35 (1991)

    Article  ADS  Google Scholar 

  21. R.H. Crabtree, Chemistry—a new type of hydrogen bond. Science 282(5396), 2000–2001 (1998)

    Article  Google Scholar 

  22. C.Q. Sun, in Relaxation of the Chemical Bond. Springer Series in Chemical Physics 108, vol 108 (Springer, Heidelberg, 2014), 807 pp

    Google Scholar 

  23. P. Hobza, Z. Havlas, The fluoroform center dot center dot center dot ethylene oxide complex exhibits a C–H center dot center dot center dot O anti-hydrogen bond. Chem. Phys. Lett. 303(3–4), 447–452 (1999)

    Article  ADS  Google Scholar 

  24. J. Coey, H. Sun, Improved magnetic properties by treatment of iron-based rare earth intermetallic compounds in anmonia. J. Magn. Magn. Mater. 87(3), L251–L254 (1990)

    Article  ADS  Google Scholar 

  25. P.W. Atkins, Physical Chemistry, 4th edn. (Oxford University Press, 1990)

    Google Scholar 

  26. S.R. Morrison, The Chemical Physics of Surfaces (Plenum Press, London, 1977)

    Book  Google Scholar 

  27. C.Q. Sun, C.L. Bai, A model of bonding between oxygen and metal surfaces. J. Phys. Chem. Solids 58(6), 903–912 (1997)

    Article  ADS  Google Scholar 

  28. C.Q. Sun, Dominance of broken bonds and nonbonding electrons at the nanoscale. Nanoscale 2(10), 1930–1961 (2010)

    Article  ADS  Google Scholar 

  29. C.Q. Sun, X. Zhang, W.T. Zheng, Hidden force opposing ice compression. Chem. Sci. 3, 1455–1460 (2012)

    Article  Google Scholar 

  30. C.Q. Sun, X. Zhang, J. Zhou, Y. Huang, Y. Zhou, W. Zheng, Density, elasticity, and stability anomalies of water molecules with fewer than four neighbors. J. Phys. Chem. Lett. 4, 2565–2570 (2013)

    Article  Google Scholar 

  31. R.F. McGuire, F.A. Momany, H.A. Scheraga, Energy parameters in polypeptides. V. An empirical hydrogen bond potential function based on molecular orbital calculations. J. Phys. Chem. 76, 375–393 (1972)

    Article  Google Scholar 

  32. N. Kumagai, K. Kawamura, T. Yokokawa, An interatomic potential model for H2O: applications to water and ice polymorphs. Mol. Simul. 12(3–6), 177–186 (1994)

    Article  Google Scholar 

  33. Y. Huang, X. Zhang, Z. Ma, Y. Zhou, G. Zhou, C.Q. Sun, Hydrogen-bond asymmetric local potentials in compressed ice. J. Phys. Chem. B 117(43), 13639–13645 (2013)

    Article  Google Scholar 

  34. Y. Huang, X. Zhang, Z. Ma, W. Li, Y. Zhou, J. Zhou, W. Zheng, C.Q. Sun, Size, separation, structural order, and mass density of molecules packing in water and ice. Sci. Rep. 3, (2013)

    Google Scholar 

  35. C.Q. Sun, Thermo-mechanical behavior of low-dimensional systems: the local bond average approach. Prog. Mater Sci. 54(2), 179–307 (2009)

    Article  Google Scholar 

  36. X.J. Liu, M.L. Bo, X. Zhang, L.T. Li, Y.G. Nie, H. TIan, Y. Sun, S. Xu, Y. Wang, W. Zheng, C.Q. Sun, coordination-resolved electron spectrometrics. Chem. Rev. 115(14), 6746–6810 (2015)

    Google Scholar 

  37. Y. Liu, J. Wu, Communication: long-range angular correlations in liquid water. J. Chem. Phys. 139(4), 041103 (2013)

    Article  ADS  Google Scholar 

  38. X.Z. Li, B. Walker, A. Michaelides, Quantum nature of the hydrogen bond. Proc. Natl. Acad. Sci. U.S.A. 108(16), 6369–6373 (2011)

    Article  ADS  Google Scholar 

  39. X. Zhang, T. Yan, Y. Huang, Z. Ma, X. Liu, B. Zou, C.Q. Sun, Mediating relaxation and polarization of hydrogen-bonds in water by NaCl salting and heating. PCCP 16(45), 24666–24671 (2014)

    Article  ADS  Google Scholar 

  40. C.Q. Sun, X. Zhang, X. Fu, W. Zheng, J.-L. Kuo, Y. Zhou, Z. Shen, J. Zhou, Density and phonon-stiffness anomalies of water and ice in the full temperature range. J. Phys. Chem. Lett. 4, 3238–3244 (2013)

    Article  Google Scholar 

  41. C.Q. Sun, Size dependence of nanostructures: impact of bond order deficiency. Prog. Solid State Chem. 35(1), 1–159 (2007)

    Article  Google Scholar 

  42. E. Roduner, Size matters: why nanomaterials are different. Chem. Soc. Rev. 35(7), 583–592 (2006)

    Article  Google Scholar 

  43. J.W. Li, S.Z. Ma, X.J. Liu, Z.F. Zhou, C.Q. Sun, ZnO meso-mechano-thermo physical chemistry. Chem. Rev. 112(5), 2833–2852 (2012)

    Article  Google Scholar 

  44. W.T. Zheng, C.Q. Sun, Underneath the fascinations of carbon nanotubes and graphene nanoribbons. Energy Environ. Sci. 4(3), 627–655 (2011)

    Article  Google Scholar 

  45. V.M. Goldschmidt, Crystal structure and chemical correlation. Ber. Dtsch. Chem. Ges. 60, 1263–1296 (1927)

    Article  Google Scholar 

  46. P.J. Feibelman, Relaxation of hcp(0001) surfaces: a chemical view. Phys. Rev. B 53(20), 13740–13746 (1996)

    Article  ADS  Google Scholar 

  47. W.J. Huang, R. Sun, J. Tao, L.D. Menard, R.G. Nuzzo, J.M. Zuo, Coordination-dependent surface atomic contraction in nanocrystals revealed by coherent diffraction. Nat. Mater. 7(4), 308–313 (2008)

    Article  ADS  Google Scholar 

  48. M.X. Gu, Y.C. Zhou, C.Q. Sun, Local bond average for the thermally induced lattice expansion. J. Phys. Chem. B 112(27), 7992–7995 (2008)

    Article  Google Scholar 

  49. M.A. Omar, Elementary Solid State Physics: Principles and Applications (Addison-Wesley, New York, 1993)

    Google Scholar 

  50. F.A. Lindemann, The calculation of molecular natural frequencies. Phys. Z. 11, 609–612 (1910)

    Google Scholar 

  51. M. Zhao, W.T. Zheng, J.C. Li, Z. Wen, M.X. Gu, C.Q. Sun, Atomistic origin, temperature dependence, and responsibilities of surface energetics: an extended broken-bond rule. Phys. Rev. B 75(8), 085427 (2007)

    Article  ADS  Google Scholar 

  52. F. Mallamace, C. Branca, M. Broccio, C. Corsaro, C.Y. Mou, S.H. Chen, The anomalous behavior of the density of water in the range 30 K < T < 373 K. Proc. Natl. Acad. Sci. U.S.A. 104(47), 18387–18391 (2007)

    Article  ADS  Google Scholar 

  53. M. Erko, D. Wallacher, A. Hoell, T. Hauss, I. Zizak, O. Paris, Density minimum of confined water at low temperatures: a combined study by small-angle scattering of X-rays and neutrons. PCCP 14(11), 3852–3858 (2012)

    Article  ADS  Google Scholar 

  54. K. Rottger, A. Endriss, J. Ihringer, S. Doyle, W.F. Kuhs, Lattice-constants and thermal-expansion of H2O and D2O Ice ih between 10 and 265 K. Acta Crystallographica B 50, 644–648 (1994)

    Article  Google Scholar 

  55. E.B. Moore, V. Molinero, Structural transformation in supercooled water controls the crystallization rate of ice. Nature 479(7374), 506–508 (2011)

    Article  ADS  Google Scholar 

  56. S.V. Lishchuk, N.P. Malomuzh, P.V. Makhlaichuk, Contribution of H-bond vibrations to heat capacity of water. Phys. Lett. A 375(27), 2656–2660 (2011)

    Article  ADS  Google Scholar 

  57. X. Zhang, P. Sun, Y. Huang, Z. Ma, X. Liu, J. Zhou, W. Zheng, C.Q. Sun, Water nanodroplet thermodynamics: quasi-solid phase-boundary dispersivity. J. Phys. Chem. B 119(16), 5265–5269 (2015)

    Article  Google Scholar 

  58. X. Zhang, Y. Huang, P. Sun, X. Liu, Z. Ma, Y. Zhou, J. Zhou, W. Zheng, C.Q. Sun, Ice regelation: Hydrogen-bond extraordinary recoverability and water quasisolid-phase-boundary dispersivity. Sci. Rep. 5, 13655 (2015)

    Article  ADS  Google Scholar 

  59. X. Zhang, Y. Huang, Z. Ma, Y. Zhou, W. Zheng, J. Zhou, C.Q. Sun, A common supersolid skin covering both water and ice. PCCP 16(42), 22987–22994 (2014)

    Article  ADS  Google Scholar 

  60. H. Qiu, W. Guo, Electromelting of confined monolayer ice. Phys. Rev. Lett. 110(19), 195701 (2013)

    Article  ADS  Google Scholar 

  61. C. Wang, H. Lu, Z. Wang, P. Xiu, B. Zhou, G. Zuo, R. Wan, J. Hu, H. Fang, Stable liquid water droplet on a water monolayer formed at room temperature on ionic model substrates. Phys. Rev. Lett. 103(13), 137801–137804 (2009)

    Article  ADS  Google Scholar 

  62. G. Malenkov, Liquid water and ices: understanding the structure and physical properties. J. Phys. Condens. Matter 21(28), 283101 (2009)

    Article  Google Scholar 

  63. P.G. Debenedetti, H.E. Stanley, Supercooled and glassy water. Phys. Today 56(6), 40–46 (2003)

    Article  Google Scholar 

  64. W. Armstrong, Electrical phenomena the newcastle literary and philosophical society. Electr. Eng. 10, 153 (1893)

    Google Scholar 

  65. L.B. Skinner, C.J. Benmore, B. Shyam, J. Weber, J.B. Parise, Structure of the floating water bridge and water in an electric field. Proc. Natl. Acad. Sci. 109(41), 16463–16468 (2012)

    Article  ADS  Google Scholar 

  66. E.C. Fuchs, J. Woisetschlager, K. Gatterer, E. Maier, R. Pecnik, G. Holler, H. Eisenkolbl, The floating water bridge. J. Phys. D-Appl. Phys. 40(19), 6112–6114 (2007)

    Article  ADS  Google Scholar 

  67. F. Hofmeister, Concerning regularities in the protein-precipitating effects of salts and the relationship of these effects to the physiological behaviour of salts. Arch. Exp. Pathol. Pharmacol 24, 247–260 (1888)

    Article  Google Scholar 

  68. P. Lo Nostro, B.W. Ninham, Hofmeister phenomena: an update on ion specificity in biology. Chem. Rev. 112(4), 2286–322 (2012)

    Google Scholar 

  69. X. Meng, J. Guo, J. Peng, J. Chen, Z. Wang, J.-R. Shi, X.-Z. Li, E.-G. Wang, Y. Jiang, Direct visualization of concerted proton tunnelling in a water nanocluster. Nat. Phys. 11(3), 235–239 (2015)

    Article  Google Scholar 

  70. X. Zhang, Y. Huang, Z. Ma, Y. Zhou, J. Zhou, W. Zheng, Q. Jiang, C.Q. Sun, Hydrogen-bond memory and water-skin supersolidity resolving the Mpemba paradox. PCCP 16(42), 22995–23002 (2014)

    Article  ADS  Google Scholar 

  71. M. Emoto, E. Puttick, The Healing Power of Water. (Hay House, Incorporated, 2007)

    Google Scholar 

  72. G.H. Pollack, The Fourth Phase of Water: Beyond Solid, Liquid, and Vapor (Ebner & Sons Seattle, USA, 2013)

    Google Scholar 

  73. H. Sun, COMPASS: an ab initio force-field optimized for condensed-phase applications overview with details on alkane and benzene compounds. J. Phys. Chem. B 102(38), 7338–7364 (1998)

    Article  Google Scholar 

  74. V.F. Petrenko, R.W. Whitworth, Physics of Ice (Clarendon Press, 1999)

    Google Scholar 

  75. P. Pruzan, J.C. Chervin, B. Canny, Determination of the d2o ice vii-viii transition line by raman-scattering up to 51 gpa. J. Chem. Phys. 97(1), 718–721 (1992)

    Article  ADS  Google Scholar 

  76. P. Pruzan, J.C. Chervin, B. Canny, Stability domain of the ice-VIII proton-ordered phase at very high-pressure and low-temperature. J. Chem. Phys. 99(12), 9842–9846 (1993)

    Article  ADS  Google Scholar 

  77. R. Aswani, J.C. Li, A new approach to pairwise potentials for water–water interactions. J. Mol. Liq. 134(1–3), 120–128 (2007)

    Article  Google Scholar 

  78. J. Li, Inelastic neutron scattering studies of hydrogen bonding in ices. J. Chem. Phys. 105(16), 6733–6755 (1996)

    Article  ADS  Google Scholar 

  79. A.I. Kolesnikovm, J. Li, S.F. Parker, R.S. Eccleston, C.-K. Loong, Vibrational dynamics of amorphous ice. Phys. Rev. B 59(5), 3569–3578 (1999)

    Article  ADS  Google Scholar 

  80. J. Li, D. Ross, Evidence for two kinds of hydrogen bond in ice. Nature 365, 327–329 (1993)

    Article  ADS  Google Scholar 

  81. T. Yokono, S. Shimokawa, M. Yokono, H. Hattori, Infra-red spectroscopic study of structural change of liquid water induced by sunlight irradiation. Water 1, 29–34 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang Q. Sun .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Sun, C.Q., Sun, Y. (2016). O:H–O Bond Cooperativity. In: The Attribute of Water. Springer Series in Chemical Physics, vol 113. Springer, Singapore. https://doi.org/10.1007/978-981-10-0180-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-0180-2_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-0178-9

  • Online ISBN: 978-981-10-0180-2

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics