Skip to main content

Miscellaneous Issues

  • Chapter
  • First Online:
The Attribute of Water

Part of the book series: Springer Series in Chemical Physics ((CHEMICAL,volume 113))

  • 1261 Accesses

Abstract

Furnished with the rules established for O:H–O bond relaxation and polarization, one can readily gain consistent insight into the common mechanism behind the unusual behavior of water and ice under excitations by multiple fields such as isotope addition, charge induction, electromagnetic radiation, ac field electrification. The O:H–O relaxation and polarization promises the resolution to general situations of X:H–Y interaction, negative thermal expansion, dielectric relaxation, and clarify the quasisolidity of the “polywater”. Dominated by the asymmetrical, short-range, and coupled interactions, the O:H–O bond responds to excitation in a manner of long-range order.

• Multiple stimuli relax the O:HO bond in a superposition manner.

• Charge induction and energy absorption proceed in a long-range order.

• O:HO bond cooperativity is general to systems with nonbonding lone pairs being involved.

• Discriminative specific heats due to the asymmetrical, coupled, short-range interactions stem the negative thermal expansion of other substances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. C. Medcraft, D. McNaughton, C.D. Thompson, D.R.T. Appadoo, S. Bauerecker, E.G. Robertson, Water ice nanoparticles: size and temperature effects on the mid-infrared spectrum. PCCP 15(10), 3630–3639 (2013)

    Article  ADS  Google Scholar 

  2. S.A. Deshmukh, S.K. Sankaranarayanan, D.C. Mancini, Vibrational spectra of proximal water in a thermo-sensitive polymer undergoing conformational transition across the lower critical solution temperature. J. Phys. Chem. B. 116(18), 5501–5515 (2012)

    Article  Google Scholar 

  3. C. Medcraft, D. McNaughton, C.D. Thompson, D. Appadoo, S. Bauerecker, E.G. Robertson, Size and temperature dependence in the far-Ir spectra of water ice particles. Astrophys. J. 758(1), 17 (2012)

    Article  ADS  Google Scholar 

  4. K. Rottger, A. Endriss, J. Ihringer, S. Doyle, W.F. Kuhs, Lattice-constants and thermal-expansion of H2O and D2O Ice ih between 10 and 265 K. Acta Crystallog. B 50, 644–648 (1994)

    Article  Google Scholar 

  5. Y. Huang, X. Zhang, Z. Ma, Y. Zhou, W. Zheng, J. Zhou, C.Q. Sun, Hydrogen-bond relaxation dynamics: resolving mysteries of water ice. Coord. Chem. Rev. 285, 109–165 (2015)

    Article  Google Scholar 

  6. O. Bjorneholm, F. Federmann, S. Kakar, T. Moller, Between vapor and ice: free water clusters studied by core level spectroscopy. J. Chem. Phys. 111(2), 546–550 (1999)

    Article  ADS  Google Scholar 

  7. M. Abu-Samha, K.J. Borve, M. Winkler, J. Harnes, L.J. Saethre, A. Lindblad, H. Bergersen, G. Ohrwall, O. Bjorneholm, S. Svensson, The local structure of small water clusters: imprints on the core-level photoelectron spectrum. J. Phys. B. 42(5), 055201 (2009)

    Article  ADS  Google Scholar 

  8. K. Nishizawa, N. Kurahashi, K. Sekiguchi, T. Mizuno, Y. Ogi, T. Horio, M. Oura, N. Kosugi, T. Suzuki, High-resolution soft X-ray photoelectron spectroscopy of liquid water. PCCP 13, 413–417 (2011)

    Article  ADS  Google Scholar 

  9. X.J. Liu, M.L. Bo, X. Zhang, L.T. Li, Y.G. Nie, H. TIan, Y. Sun, S. Xu, Y. Wang, W. Zheng, C.Q. Sun, Coordination-resolved electron spectrometrics. Chem. Rev. 115(14), 6746–6810 (2015)

    Article  Google Scholar 

  10. D.D. Kang, J.Y. Dai, J.M. Yuan, Changes of structure and dipole moment of water with temperature and pressure: a first principles study. J. Chem. Phys. 135(2), 024505 (2011)

    Article  ADS  Google Scholar 

  11. D.D. Kang, J. Dai, H. Sun, Y. Hou, J. Yuan, Quantum similation of thermally driven phase transition and O k-edge absorption of high-pressure ice. Sci. Rep. 3, 3272 (2013)

    ADS  Google Scholar 

  12. G.M. Marion, S.D. Jakubowski, The compressibility of ice to 2.0 kbar. Cold Reg. Sci. Technol. 38(2–3), 211–218 (2004)

    Article  Google Scholar 

  13. P.G. Debenedetti, H.E. Stanley, Supercooled and glassy water. Phys. Today 56(6), 40–46 (2003)

    Article  Google Scholar 

  14. R.A. Fine, F.J. Millero, Compressibility of water as a function of temperature and pressure. J. Chem. Phys. 59, 5529 (1973)

    Article  ADS  Google Scholar 

  15. G.S. Kell, Density, thermal expansivity, and compressibility of liquid water from 0. deg. to 150. deg. Correlations and tables for atmospheric pressure and saturation reviewed and expressed on 1968 temperature scale. J. Chem. Eng. Data 20(1), 97–105 (1975)

    Article  Google Scholar 

  16. X. Zhang, T. Yan, Y. Huang, Z. Ma, X. Liu, B. Zou, C.Q. Sun, Mediating relaxation and polarization of hydrogen-bonds in water by NaCl salting and heating. PCCP 16(45), 24666–24671 (2014)

    Article  ADS  Google Scholar 

  17. Y. Marechal, The molecular structure of liquid water delivered by absorption spectroscopy in the whole IR region completed with thermodynamics data. J. Mol. Struct. 1004(1–3), 146–155 (2011)

    Article  ADS  Google Scholar 

  18. A. Nilsson, D. Nordlund, I. Waluyo, N. Huang, H. Ogasawara, S. Kaya, U. Bergmann, L.Å. Näslund, H. Öström, P. Wernet, K.J. Andersson, T. Schiros, L.G.M. Pettersson, X-ray absorption spectroscopy and X-ray Raman scattering of water and ice; an experimental view. J. Electron Spectrosc. Relat. Phenom. 177(2–3), 99–129 (2010)

    Article  Google Scholar 

  19. J. Meibohm, S. Schreck, P. Wernet, Temperature dependent soft X-ray absorption spectroscopy of liquids. Rev. Sci. Instrum. 85(10), 103102 (2014)

    Article  ADS  Google Scholar 

  20. M. Emoto, E. Puttick, The Healing Power of Water (Hay House, Incorporated, 2007)

    Google Scholar 

  21. J.D. Brownridge, When does hot water freeze faster then cold water? A search for the Mpemba effect. Am. J. Phys. 79(1), 78 (2011)

    Article  ADS  Google Scholar 

  22. Q. Zeng, Y. Zhou, W. Kai, B. Zou, C.Q. Sun, Solution room temperature phase precipitation under compression. Communicated (2015)

    Google Scholar 

  23. G.H. Pollack, The Fourth Phase of Water: Beyond Solid, Liquid, and Vapor (Ebner & Sons Seattle, USA, 2013)

    Google Scholar 

  24. C.A. Silvera Batista, R.G. Larson, N.A. Kotov, Nonadditivity of nanoparticle interactions. Science 350(6257) (2015)

    Google Scholar 

  25. N.J. English, J. MacElroy, Molecular dynamics simulations of microwave heating of water. J. Chem. Phys. 118(4), 1589–1592 (2003)

    Article  ADS  Google Scholar 

  26. A. De Ninno, A.C. Castellano, On the effect of weak magnetic field on solutions of glutamic acid: the function of water, in Journal of Physics: Conference Series (IOP Publishing, 2011)

    Google Scholar 

  27. X. Shen, Increased dielectric constant in the water treated by extremely low frequency electromagnetic field and its possible biological implication, in Journal of Physics: Conference Series (IOP Publishing, 2011)

    Google Scholar 

  28. A. Goldsworthy, H. Whitney, E. Morris, Biological effects of physically conditioned water. Water Res. 33(7), 1618–1626 (1999)

    Article  Google Scholar 

  29. K. Zhou, G. Lu, Q. Zhou, J. Song, S. Jiang, H. Xia, Monte Carlo simulation of liquid water in a magnetic field. J. Appl. Phys. 88(4), 1802–1805 (2000)

    Article  ADS  Google Scholar 

  30. G. Zhang, W. Zhang, H. Dong, Magnetic freezing of confined water. J. Chem. Phys. 133(13), 134703 (2010)

    Article  ADS  Google Scholar 

  31. Y. Fujimura, M. Iino, The surface tension of water under high magnetic fields. J. Appl. Phys. 103(12), 2940128 (2008)

    Article  Google Scholar 

  32. R. Cai, H. Yang, J. He, W. Zhu, The effects of magnetic fields on water molecular hydrogen bonds. J. Mol. Struct. 938(1–3), 15–19 (2009)

    Article  ADS  Google Scholar 

  33. Z. Zhou, H. Zhao, J. Han, Supercooling and crystallization of water under DC magnetic fields. CIESC J. 63(5), 1408–1410 (2012)

    Google Scholar 

  34. D. Taylor, Standard YouTube License (2013), https://www.youtube.com/watch?v=kt—n8N_kqto

  35. P. domain, Magnetic field whirpool, https://www.wikiwand.com/en/Whirlpool

  36. L. Chen, C.J. Li, Z.M. Ren, Variation of surface tension of water in high magnetic field. Adv. Mater. Res. 750–752, 2279–2282 (2013)

    Article  Google Scholar 

  37. Z. Wang, F.C. Wang, Y.P. Zhao, Tap dance of a water droplet. Proc. Roy. Soc. London A. 468(2145), 2485–2495 (2012)

    Article  ADS  Google Scholar 

  38. S. Ceurstemont, Zapped droplets tap dance to the beat (Zhao Yapu). New Scientist: http://www.newscientist.com/blogs/nstv/2012/04/zapped-droplets-tap-dance-to-the-beat.html (2013)

  39. Q. Yuan, Y.-P. Zhao, Multiscale dynamic wetting of a droplet on a lyophilic pillar-arrayed surface. J. Fluid Mech. 716, 171–188 (2013)

    Article  ADS  MATH  Google Scholar 

  40. Q.Z. Yuan, Y.P. Zhao, Wetting on flexible hydrophilic pillar-arrays. Sci. Rep. 3, 1944 (2013)

    ADS  Google Scholar 

  41. S. Iikubo, K. Kodama, K. Takenaka, H. Takagi, M. Takigawa, S. Shamoto, Local lattice distortion in the giant negative thermal expansion material Mn3Cu1-xGexN. Phys. Rev. Lett. 101(20), 205901 (2008)

    Article  ADS  Google Scholar 

  42. A.L. Goodwin, M. Calleja, M.J. Conterio, M.T. Dove, J.S.O. Evans, D.A. Keen, L. Peters, M.G. Tucker, Colossal positive and negative thermal expansion in the framework material Ag3 Co(CN)(6). Science 319(5864), 794–797 (2008)

    Article  ADS  Google Scholar 

  43. A.C. McLaughlin, F. Sher, J.P. Attfield, Negative lattice expansion from the superconductivity-antiferromagnetism crossover in ruthenium copper oxides. Nature 436(7052), 829–832 (2005)

    Article  ADS  Google Scholar 

  44. J.S.O. Evans, Negative thermal expansion materials. J. Chem. Soc.-Dalton Trans. (19): 3317–3326 (1999)

    Google Scholar 

  45. T.A. Mary, J.S.O. Evans, T. Vogt, A.W. Sleight, Negative thermal expansion from 0.3 to 1050 Kelvin in ZrW2O8. Science 272(5258), 90–92 (1996)

    Article  ADS  Google Scholar 

  46. S. Stoupin, Y.V. Shvyd’ko, Thermal expansion of diamond at low temperatures. Phys. Rev. Lett. 104(8), 085901 (2010)

    Article  ADS  Google Scholar 

  47. Q.H. Tang, T.C. Wang, B.S. Shang, F. Liu, Thermodynamic properties and constitutive relations of crystals at finite temperature. Sci. China-Phys. Mech. Astron. G. 55, 933 (2012)

    Article  Google Scholar 

  48. Y.J. Su, H. Wei, R.G. Gao, Z. Yang, J. Zhang, Z.H. Zhong, Y.F. Zhang, Exceptional negative thermal expansion and viscoelastic properties of graphene oxide paper. Carbon 50(8), 2804–2809 (2012)

    Article  Google Scholar 

  49. A.W. Sleight, Compounds that contract on heating. Inorg. Chem. 37(12), 2854–2860 (1998)

    Article  Google Scholar 

  50. J.S.O. Evans, T.A. Mary, T. Vogt, M.A. Subramanian, A.W. Sleight, Negative thermal expansion in ZrW2O8 and HfW2O8. Chem. Mater. 8(12), 2809–2823 (1996)

    Article  Google Scholar 

  51. G. Ernst, C. Broholm, G.R. Kowach, A.P. Ramirez, Phonon density of states and negative thermal expansion in ZrW2O8. Nature 396(6707), 147–149 (1998)

    Article  ADS  Google Scholar 

  52. A.K.A. Pryde, K.D. Hammonds, M.T. Dove, V. Heine, J.D. Gale, M.C. Warren, Origin of the negative thermal expansion in ZrW2O8 and ZrV2O7. J. Phys.-Condens. Matter 8(50), 10973–10982 (1996)

    Article  ADS  Google Scholar 

  53. M. Chaplin. Water structure and science, http://www.lsbu.ac.uk/water/

  54. C.W. Li, X. Tang, J.A. Muñoz, J.B. Keith, S.J. Tracy, D.L. Abernathy, B. Fultz, Structural relationship between negative thermal expansion and quartic anharmonicity of cubic ScF3. Phys. Rev. Lett. 107(19), 195504 (2011)

    Article  ADS  Google Scholar 

  55. B.K. Greve, K.L. Martin, P.L. Lee, P.J. Chupas, K.W. Chapman, A.P. Wilkinson, Pronounced negative thermal expansion from a simple structure: cubic ScF3. J. Am. Chem. Soc. 132(44), 15496–15498 (2010)

    Article  Google Scholar 

  56. L.K. Pan, S.Q. Xu, W. Qin, X.J. Liu, Z. Sun, W.T. Zheng, C.Q. Sun, Skin dominance of the dielectric-electronic-phononic-photonic attribute of nanostructured silicon. Surf. Sci. Rep. 68(3–4), 418–455 (2013)

    Article  ADS  Google Scholar 

  57. L.K. Pan, H.T. Huang, C.Q. Sun, Dielectric relaxation and transition of porous silicon. J. Appl. Phys. 94(4), 2695–2700 (2003)

    Article  ADS  Google Scholar 

  58. L.K. Pan, C.Q. Sun, T.P. Chen, S. Li, C.M. Li, B.K. Tay, Dielectric suppression of nanosolid silicon. Nanotechnology 15(12), 1802–1806 (2004)

    Article  ADS  Google Scholar 

  59. R. Tsu, D. Babic, Doping of a quantum-dot. Appl. Phys. Lett. 64(14), 1806–1808 (1994)

    Article  ADS  Google Scholar 

  60. J.W. Li, L.W. Yang, Z.F. Zhou, P.K. Chu, X.H. Wang, J. Zhou, L.T. Li, C.Q. Sun, Bandgap modulation in ZnO by size, pressure, and temperature. J. Phys. Chem. C 114(31), 13370–13374 (2010)

    Article  Google Scholar 

  61. L.K. Pan, Y.K. Ee, C.Q. Sun, G.Q. Yu, Q.Y. Zhang, B.K. Tay, Band-gap expansion, core-level shift, and dielectric suppression of porous silicon passivated by plasma fluorination. J. Vac. Sci. Technol. B 22(2), 583–587 (2004)

    Article  Google Scholar 

  62. G. Ouyang, C.Q. Sun, W.G. Zhu, Atomistic origin and pressure dependence of band gap variation in semiconductor nanocrystals. J. Phys. Chem. C. 113(22), 9516–9519 (2009)

    Article  Google Scholar 

  63. C.S. Zha, R.J. Hemley, S.A. Gramsch, H.K. Mao, W.A. Bassett, Optical study of H2O ice to 120 GPa: dielectric function, molecular polarizability, and equation of state. J. Chem. Phys. 126(7), 074506 (2007)

    Article  ADS  Google Scholar 

  64. W.B. Floriano, M.A.C. Nascimento, Dielectric constant and density of water as a function of pressure at constant temperature. Braz. J. Phys. 34(1), 38–41 (2004)

    Article  ADS  Google Scholar 

  65. F. Klameth, M. Vogel, Slow water dynamics near a glass transition or a solid interface: a common rationale. J. Phys. Chem. Lett., 4385–4389 (2015)

    Google Scholar 

  66. S.T. van der Post, C.S. Hsieh, M. Okuno, Y. Nagata, H.J. Bakker, M. Bonn, J. Hunger, Strong frequency dependence of vibrational relaxation in bulk and surface water reveals sub-picosecond structural heterogeneity. Nat. Commun. 6, 8384 (2015)

    Article  Google Scholar 

  67. E. Zolfagharifard. Leidenfrost effect: http://www.dailymail.co.uk/sciencetech/article-2442638/Leidenfrost-Effect-makes-high-temperature-water-travel-uphill.html (2013)

  68. Editorial, U.S. Begins efforts to exceed the USSR in polywater science, in Wall Street Journal (1969)

    Google Scholar 

  69. Editorial, Polywater, in New York Times (1969)

    Google Scholar 

  70. D.L. Rousseau, S.P.S. Porto, Polywater: polymer or artifact? Science 167(3926), 1715–1719 (1970)

    Article  ADS  Google Scholar 

  71. D.L. Rousseau, “Polywater” and sweat: similarities between the infrared spectra. Science 171(3967), 170–172 (1971)

    Article  ADS  Google Scholar 

  72. Editorial, Science: doubts about polywater, in Time (1970)

    Google Scholar 

  73. B.V. Derjagui, N.V. Churaev, Nature of anomalous water. Nature 244(5416), 430–431 (1973)

    Google Scholar 

  74. D. Eisenberg, A scientific gold rush. Science 213(4512), 1104–1105 (1981)

    Article  Google Scholar 

  75. G.H. Zuo, J. Hu, H.P. Fang, Effect of the ordered water on protein folding: An off-lattice Gõ-like model study. Phys. Rev. E 79(3), 031925 (2009)

    Article  ADS  Google Scholar 

  76. A. Kuffel, J. Zielkiewicz, Why the solvation water around proteins is more dense than bulk water. J. Phys. Chem. B (2012)

    Google Scholar 

  77. A. Twomey, R. Less, K. Kurata, H. Takamatsu, A. Aksan, In Situ spectroscopic quantification of protein-ice interactions. J. Phys. Chem. B 117(26), 7889–7897 (2013)

    Article  Google Scholar 

  78. I.V. Stiopkin, C. Weeraman, P.A. Pieniazek, F.Y. Shalhout, J.L. Skinner, A.V. Benderskii, Hydrogen bonding at the water surface revealed by isotopic dilution spectroscopy. Nature 474(7350), 192–195 (2011)

    Article  ADS  Google Scholar 

  79. I. Michalarias, I. Beta, R. Ford, S. Ruffle, J.C. Li, Inelastic neutron scattering studies of water in DNA. Appl. Phys. A Mater. Sci. Process. 74, s1242–s1244 (2002)

    Article  ADS  Google Scholar 

  80. D. Russo, J. Teixeira, L. Kneller, J.R.D. Copley, J. Ollivier, S. Perticaroli, E. Pellegrini, M.A. Gonzalez, Vibrational density of states of hydration water at biomolecular sites: hydrophobicity promotes low density amorphous ice behavior. J. Am. Chem. Soc. 133(13), 4882–4888 (2011)

    Article  Google Scholar 

  81. T. Yan, S. Li, K. Wang, X. Tan, Z. Jiang, K. Yang, B. Liu, G. Zou, B. Zou, Pressure-induced phase transition in N-H…O hydrogen-bonded molecular crystal oxamide. J. Phys. Chem. B 116(32), 9796–9802 (2012)

    Article  Google Scholar 

  82. K. Wang, D. Duan, R. Wang, A. Lin, Q. Cui, B. Liu, T. Cui, B. Zou, X. Zhang, J. Hu, G. Zou, H.K. Mao, Stability of hydrogen-bonded supramolecular architecture under high pressure conditions: pressure-induced amorphization in melamine-boric acid adduct. Langmuir 25(8), 4787–4791 (2009)

    Article  Google Scholar 

  83. T. Yan, K. Wang, X. Tan, K. Yang, B. Liu, B. Zou, Pressure-induced phase transition in N-H…O hydrogen-bonded molecular crystal biurea: combined raman scattering and X-ray diffraction study. J. Phys. Chem. C. 118(28), 15162–15168 (2014)

    Article  Google Scholar 

  84. Y. Yoshimura, S.T. Stewart, H.K. Mao, R.J. Hemley, In situ Raman spectroscopy of low-temperature/high-pressure transformations of H2O. J. Chem. Phys. 126(17), 174505 (2007)

    Article  ADS  Google Scholar 

  85. C.-S. Zha, Z. Liu, R. Hemley, Synchrotron infrared measurements of dense hydrogen to 360 GPa. Phys. Rev. Lett. 108(14), 146402 (2012)

    Article  ADS  Google Scholar 

  86. H. Liu, H. Wang, Y. Ma, Quasi-molecular and atomic phases of dense solid hydrogen. J Phys. Chem. C. 116(16), 9221–9226 (2012)

    Article  Google Scholar 

  87. K.R. O’Neal, T.V. Brinzari, J.B. Wright, C. Ma, S. Giri, J.A. Schlueter, Q. Wang, P. Jena, Z. Liu, J.L. Musfeldt, Pressure-induced magnetic crossover driven by hydrogen bonding in CuF2(H2O)2(3-chloropyridine). Sci. Rep. 4, 6054 (2014)

    Google Scholar 

  88. W.A. Crichton, P. Bouvier, B. Winkler, A. Grzechnik, The structural behaviour of LaF(3) at high pressures. Dalton Trans. 39(18), 4302–4311 (2010)

    Article  Google Scholar 

  89. A. Kleppe, A. Jephcoat, High-pressure Raman spectroscopic studies of FeS2 pyrite. Mineral. Mag. 68(3), 433–441 (2004)

    Article  Google Scholar 

  90. S. Jiang, D. Duan, F. Li, X. Huang, X. Yang, W. Li, Y. Huang, K. Bao, Q. Zhou, B. Liu, T. Cui, The hydrogen-bond effect on the high pressure behavior of hydrazinium monochloride. J. Raman Spectrosc. 46(2), 266–272 (2015)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang Q. Sun .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Sun, C.Q., Sun, Y. (2016). Miscellaneous Issues. In: The Attribute of Water. Springer Series in Chemical Physics, vol 113. Springer, Singapore. https://doi.org/10.1007/978-981-10-0180-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-0180-2_16

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-0178-9

  • Online ISBN: 978-981-10-0180-2

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics