Skip to main content

Aqueous Solution Phase Transition

  • Chapter
  • First Online:
The Attribute of Water

Part of the book series: Springer Series in Chemical Physics ((CHEMICAL,volume 113))

  • 1252 Accesses

Abstract

Solute ionic electrification of the O:H–O bond modulates significantly the critical pressures, temperatures, and gelation times for transiting aqueous solution into solid by dispersing the boundaries of the quasisolid phase. High-pressure in situ Raman spectrometrics revealed that transiting NaX solutions into ice VI and then into ice VII phase requires higher excessive pressures at 298 K temperature. The ΔPC varies in the order of Hofmeister series: X = I > Br > Cl > F ~ 0. Meanwhile, salting st​iffens the ωH and elongates the dOO throughout the course of compressure when transiting phase VII to phase X at even higher pressure. Recovering the electrification-shortened H–O bond needs excessive energy for the same sequence of phase transitions. Concentration dependence of the NaI solution indicates a different mechanism from that of solution type but it is similar to heating on the Liquid-VI-VII phase transition dynamics.

• Solvent O:H–O phonon relaxation by electrification mediates the T C for phase transition by dispersing the quasisolid phase boundaries.

• The ΔE L loss depresses the T N for ice/quasisolid transition; the ΔE H gain elevates the T m for liquid/quasisolid transition.

• Liquid/VI, VI/VII, and VII/XI phase transition at constant T C requires excessive ΔP C to recover the electrification-deformed H–O bond; mechanical impulsion raises but ionic electrification depresses the freezing temperature of the quasisolid (supercooled) water by modifying the O:H energy.

• Colloidal gelation at constant T C and P C takes time that follows the Hofmeister series but the concentration dependence is less conclusive because of the involvement of other kinds of ions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. C.Q. Sun, Hofmeister pressures for liquid/VI and VI/VII phase transition. Communicated

    Google Scholar 

  2. Q. Zeng, Y. Zhou, W. Kai, B. Zou, C.Q. Sun, NaI concentration resolved critical pressures for the solution-ice VI-ice VII transition at room temperature. Communicated (2015)

    Google Scholar 

  3. J. Niehaus, W. Cantrell, Contact freezing of water by salts. J. Phys. Chem. Lett. (2015)

    Google Scholar 

  4. M. van der Linden, B.O. Conchúir, E. Spigone, A. Niranjan, A. Zaccone, P. Cicuta, Microscopic origin of the Hofmeister effect in gelation kinetics of colloidal silica. J. Phys. Chem. Lett. 2881–2887 (2015)

    Google Scholar 

  5. Q. Zeng, Y. Zhou, W. Kai, B. Zou, C.Q. Sun, Room temperature icing of NaX solution by compression (X = F, Cl, Br, I). Communicated (2015)

    Google Scholar 

  6. C.Q. Sun, X. Zhang, W.T. Zheng, Hidden force opposing ice compression. Chem. Sci. 3, 1455–1460 (2012)

    Article  Google Scholar 

  7. Q. Zeng, Y. Zhou, W. Kai, B. Zou, C.Q. Sun, Solution room temperature phase precipitation under compression. Communicated (2015)

    Google Scholar 

  8. X. Zhang, P. Sun, Y. Huang, T. Yan, Z. Ma, X. Liu, B. Zou, J. Zhou, W. Zheng, C.Q. Sun, Water’s phase diagram: from the notion of thermodynamics to hydrogen-bond cooperativity. Prog. Solid State Chem. 43, 71–81 (2015)

    Article  Google Scholar 

  9. Y. Zhou, Y. Huang, Y. Gong, C.Q. Sun, Skin preferential occupancy of the I anion in NaI-water solution. Communicated (2016)

    Google Scholar 

  10. N.R. Gokhale, J.D. Spengler, Freezing of freely suspended, supercooled water drops by contact nucleation. J. Appl. Meteorol. 11(1), 157–160 (1972)

    Article  ADS  Google Scholar 

  11. W.A. Cooper, A possible mechanism for contact nucleation. J. Atmos. Sci. 31(7), 1832–1837 (1974)

    Article  ADS  Google Scholar 

  12. N. Fukuta, A study of the mechanism of contact ice nucleation. J. Atmos. Sci. 32(8), 1597–1603 (1975)

    Article  ADS  Google Scholar 

  13. C. Gurganus, A.B. Kostinski, R.A. Shaw, Fast imaging of freezing drops: no preference for nucleation at the contact line. J. Phys. Chem. Lett. 2(12), 1449–1454 (2011)

    Article  Google Scholar 

  14. R.A. Shaw, A.J. Durant, Y. Mi, Heterogeneous surface crystallization observed in undercooled water. J. Phys. Chem. B 109(20), 9865–9868 (2005)

    Article  Google Scholar 

  15. R.G. Knollenberg, A laboratory study of the local cooling resulting from the dissolution of soluble ice nuclei having endothermic heats of solution. J. Atmos. Sci. 26(1), 115–124 (1969)

    Article  ADS  Google Scholar 

  16. X. Zhang, T. Yan, Y. Huang, Z. Ma, X. Liu, B. Zou, C.Q. Sun, Mediating relaxation and polarization of hydrogen-bonds in water by NaCl salting and heating. PCCP 16(45), 24666–24671 (2014)

    Article  ADS  Google Scholar 

  17. Y. Xu, L. Li, P. Zheng, Y.C. Lam, X. Hu, Controllable gelation of methylcellulose by a salt mixture. Langmuir 20(15), 6134–6138 (2004)

    Article  Google Scholar 

  18. Y. Xu, C. Wang, K. Tam, L. Li, Salt-assisted and salt-suppressed sol-gel transitions of methylcellulose in water. Langmuir 20(3), 646–652 (2004)

    Article  Google Scholar 

  19. L.E. Bove, R. Gaal, Z. Raza, A.-A. Ludl, S. Klotz, A.M. Saitta, A.F. Goncharov, P. Gillet, Effect of salt on the H-bond symmetrization in ice. Proceedings of the National Academy of Sciences 112(27), 8216–8220 (2015)

    Google Scholar 

  20. Y. Bronstein, P. Depondt, L.E. Bove, R. Gaal, A.M. Saitta, F. Finocchi, Quantum versus classical protons in pure and salty ice under pressure. Phys. Rev. B 93(2), 024104 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang Q. Sun .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Sun, C.Q., Sun, Y. (2016). Aqueous Solution Phase Transition. In: The Attribute of Water. Springer Series in Chemical Physics, vol 113. Springer, Singapore. https://doi.org/10.1007/978-981-10-0180-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-0180-2_14

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-0178-9

  • Online ISBN: 978-981-10-0180-2

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics