Skip to main content

Meta-Analysis of Prognostic Studies Evaluating Time-Dependent Diagnostic and Predictive Capacities of Biomarkers

  • Chapter
  • First Online:
  • 879 Accesses

Abstract

Prognostic biomarker studies, which examine the association between biomarkers and patients’ prognoses, have played important roles in clinical decision making. Since prognostic studies are often conducted with small sample sizes in a limited number of centers, meta-analysis is expected to be a powerful tool to obtain sound evidence on prognostic biomarkers. However, the application of meta-analysis of prognostic studies has been limited partly due to the lack of sound statistical methods. In this chapter, we introduce some recently developed methods useful for the evaluation of diagnostic or predictive capacities of biomarkers for binary or time-to-event outcomes. In addition, we newly present a novel method to estimate the time-dependent positive and negative predictive value curves based on meta-analysis.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Altman DG. Systematic reviews of evaluations of prognostic variables. BMJ. 2001;323:224–8.

    Article  Google Scholar 

  2. American Society of Clinical Oncology. Clinical practice guidelines for the treatment of unresectable non-small-cell lung cancer. J Clin Oncol. 1997;15:2996–3018.

    Article  Google Scholar 

  3. Becattini C, Vedovati MC, Agnelli G. Prognostic value of troponin in acute pulmonary embolism. Circulation. 2007;116:427–33.

    Article  Google Scholar 

  4. Bennett S. Analysis of survival data by the proportional odds model. Stat Med. 1982;2:273–7.

    Article  Google Scholar 

  5. Callagy GM, Webber MJ, Pharoa PDP, Carldas C. Meta-analysis confirms BCL2 is an independent prognostic marker in breast cancer. BMC Cancer. 2008;8:153–62.

    Article  Google Scholar 

  6. Cheng SC, Wei LJ, Ying Z. Analysis of transformation models with censored data. Biometrika. 1995;82:835–45.

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen K, Jin Z, Ying Z. Semiparametric analysis of transformation models with censored data. Biometrika. 2002;89:659–68.

    Article  MathSciNet  MATH  Google Scholar 

  8. Chu H, Nie L, Cole ST, Poole C. Meta-analysis of diagnostic accuracy studies accounting for disease prevalence: alternative parametrizations and model selection. Stat Med. 2009;28:2384–99.

    Article  MathSciNet  Google Scholar 

  9. Combescure C, Daures JP, Foucher Y. A literature-based approach to evaluate the predictive capacity of a marker using time-dependent summary receiver operating characteristics. Stat Methods Med Res. 2016;25:674–85.

    Article  MathSciNet  Google Scholar 

  10. Cox DR. Regression models and life tables. J R Stat Soc B. 1972;34:187–220.

    MathSciNet  MATH  Google Scholar 

  11. de Azambujya E, Cardoso F, de Castro Jr G, Colozza M, Mano MS, Durbecq V, Sotiriou C, Larsimont D, Piccart-Gebhart MJ, Paesmans M. Ki-67 as prognostic marker in early breast cancer: a meta-analysis of published studies involving 12155 patients. Br J Cancer. 2007;96:1504–13.

    Article  Google Scholar 

  12. Hamza TH, van Houwelingen HC, Stijnen T. The binomial distribution of meta-analysis was preferred to model within-study variability. J Clin Epidemiol. 2008;61:41–51.

    Article  Google Scholar 

  13. Harbord RM, Deeks JJ, Egger M. A unification of models for meta-analysis of diagnostic accuracy studies. Biostatistics. 2007;8:239–51.

    Article  MATH  Google Scholar 

  14. Harel O, Zhou XH. Multiple imputation: review of theory, implementation and software. Stat Med. 2007;26:3057–77.

    Article  MathSciNet  Google Scholar 

  15. Hattori S, Zhou XH. Evaluation of predictive capacities of biomarkers based on research synthesis. Stat Med. 2016;35:4559–72.

    Article  MathSciNet  Google Scholar 

  16. Hattori S, Zhou XH. Time-dependent summary receiver operating characteristics for meta-analysis of prognostic studies. Stat Med. 2016;35:4746–63.

    Article  MathSciNet  Google Scholar 

  17. Heagerty PJ, Lumley T, Pepe MS. Time-dependent ROC curves for censored survival data and a diagnostic marker. Biometrics. 2000;56:337–44.

    Article  MATH  Google Scholar 

  18. Hemingway H, Croft P, Perel P, Hayden JA, Abrams K, Timmis A, Lindsay AB, Udumyan R, Moons KGM, Steyerberg EW, Robert I, Schroter S, Altman DG, Riley RD, for the PROGRESS Group. Prognosis research strategy (PROGRESS) 1: A framework for researching clinical outcomes. Br Med J. 2013; 346:e5595.

    Google Scholar 

  19. Hemingway H, Riley RD, Altman DG. Ten steps towards improving prognosis research. BMJ. 2010;340:410–4.

    Article  Google Scholar 

  20. Huang Y, Pepe MS. Biomarker evaluation using the controls as a reference population. UW biostatistics working paper series. Working paper 306;2007.

    Google Scholar 

  21. Leeflang MMG, Deeks JJ, Rutjes AWS, Reitsma JB, Bossuyt PMM. Bivariate meta-analysis of predictive values of diagnostic tests can be an alternative to bivariate meta-analysis of sensitivity and specificity. J Clin Epidemiol. 2012;65:1088–97.

    Article  Google Scholar 

  22. Macaskill P. Empirical Bayes estimates generated in a hierarchical summary ROC analysis agreed closely with those of a full Bayesian analysis. J Clin Epidemiol. 2004;57:925–32.

    Article  Google Scholar 

  23. McShane LM, Altman DG, Sauerbrei W, Taube SE, Gion M, Clark GM. Reporting recommendations for tumor marker prognostic studies (REMARK). J Natl Cancer Inst. 2005;97:1180–4.

    Article  Google Scholar 

  24. Moskowitz CS, Pepe MS. Quantifying and comparing the predictive accuracy of continuous prognostic factors for binary outcome. Biostatistics. 2004;5:113–27.

    Article  MATH  Google Scholar 

  25. Moses LE, Shapiro D, Litterberg B. Combining independent studies of a diagnostic test into a summary ROC curve: data-analytic approaches and some additional considerations. Stat Med. 1993;12:1293–316.

    Article  Google Scholar 

  26. Na F, Wang J, Li C, Deng L, Xue J, Lu Y. Primary tumor standardized uptake value measured on F18-fluorodeoxyplucose positron emission tomography is of prediction value for survival and local control in non-small-cell lung cancer receiving radiotherapy: meta-analysis. J Thorac Oncol. 2014;9:834–42.

    Article  Google Scholar 

  27. Pak K, Cheon GJ, Nam HY, Kim SJ, Kang KW, Chung JK, Kim EE, Lee DS. Prognostic value of metabolic tumor volume and total lesion glycolysis in head and neck cancer: a systematic review and meta-analysis. J Nucl Med. 2014;55:884–90.

    Article  Google Scholar 

  28. Parmar M, Torri V, Stewart L. Extracting summary statistics to perform meta-analyses of the published literature for survival endpoints. Stat Med. 1998;17:2815–34.

    Article  Google Scholar 

  29. Poisot T. The digitize package: extracting numerical data from scatterplots. R J. 2011;3:25–6.

    Google Scholar 

  30. Reitsma JB, Glas AS, Rutjes AW, Scholten RJPM, Bossuyt PM, Zwinderman AH. Bivariate analysis of sensitivity and specificity produces informative summary measures in diagnostic reviews. J Clin Epidemiol. 2005;58:982–90.

    Article  Google Scholar 

  31. Riley RD, Abrams KR, Sutton AJ, Lambert PC, Jones DR. Reporting of prognostic markers: current problems and development of guidelines for evidence-based practice in the future. Br J Cancer. 2003;88:1191–8.

    Article  Google Scholar 

  32. Riley RD, Hayden JA, Steyerberg EW, Moons KGM, Abrams KR, Kyzas PA, Malats N, Briggs A, Schroter S, Altman DG, Hemingway H, The PROGRESS Group. Prognosis research strategy (PROGRESS) 2: prognostic factor research. PLOS Med. 2013;10(2):e1001380.

    Article  Google Scholar 

  33. Riley RD, Elia EG, Malin G, Hemming K, Price MP. Multivariate meta-analysis of prognostic factor studies with multiple cut-points and/or methods of measurement. Stat Med. 2015;34:2481–96.

    Article  MathSciNet  Google Scholar 

  34. Riley RD, Ikhlaaq A, Debray TP, Willis BH, Noordzij JP, Higgins JPT, Deeks J. Summarising and validating test accuracy results across multiple studies for use in clinical practice. Stat Med. 2015;34:2081–103.

    Article  MathSciNet  Google Scholar 

  35. Rubin DB. Multiple imputation for non-response in surveys. New York: Wiley; 1987.

    Book  Google Scholar 

  36. Rutter CM, Gatsonis CA. A hierarchical regression approach to meta-analysis of diagnostic test accuracy evaluations. Stat Med. 2001;20:2865–84.

    Article  Google Scholar 

  37. Sadashima E, Hattori S, Takahashi K. Meta-analysis of prognostic studies for a biomarker with a study-specific cut-off value. Res Synth Methods. 2016;7:402–419.

    Google Scholar 

  38. Shen CW, Chen YH. Model selection of generalized estimating equations with multiply imputed longitudinal data. Biometrical J. 2013;55:899–911.

    Article  MathSciNet  MATH  Google Scholar 

  39. Shi QJ, Copas JB. Meta-analysis for trend estimation. Stat Med. 2004;23:3–19.

    Article  Google Scholar 

  40. Schomakera M, Heumannb C. Model selection and model averaging after multiple imputation. Comput Stat Data Anal. 2014;71:758–70.

    Article  MathSciNet  Google Scholar 

  41. Song XJ, Zhou X-H, Ma S. Nonparametric receiver operating characteristic-based evaluation for survival outcomes. Stat Med. 2012;31:2660–75.

    Article  MathSciNet  Google Scholar 

  42. Sutton AJ, Higgins JPT. Recent developments in meta-analysis. Stat Med. 2008;27:625–50.

    Article  MathSciNet  Google Scholar 

  43. Takahashi K, Tango T. Assignment of grouped exposure levels for trend estimation in a regression analysis of summarized data. Stat Med. 2010;29:2605–16.

    Article  MathSciNet  Google Scholar 

  44. Zheng Y, Cai T, Pepe MS, Levy WC. Time-dependent predictive values of prognostic biomarkers with failure time outcome. J Am Stat Assoc. 2008;103:362–8.

    Article  MathSciNet  MATH  Google Scholar 

  45. Zheng Y, Cai T, Stanford JL, Feng Z. Semiparametric models of time-dependent predictive values of prognostic biomarkers. Biometrics. 2010;66:50–60.

    Article  MathSciNet  MATH  Google Scholar 

  46. Zheng Y, Katsaros D, Shan JCS, Longrais IR, Porpiglia M, Scorilas A, Kim NW, Wolfert RL, Simon I, Li L, Feng Z, Diamandis PD. A multiparameteric panel for ovarian cancer diagnosis, prognosis, and response to chemotherapy. Clin Cancer Res. 2007;13:6984–92.

    Article  Google Scholar 

  47. Zhou XH, Obuchowski NA, McClish DK. Statistical methods in diagnostic medicine. New York: Wiley; 2011.

    Book  MATH  Google Scholar 

  48. Zhou XH, Ma Y, Gary Chan KC. Covariate-specific and covariate-adjusted predictive values of prognostic biomarkers with survival outcome. In: Fang JQ, Lu Y, Tian L, Jin H, editors. Advanced medical statistics. 2nd ed. Singapore: World Science Publishing Co; 2015.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satoshi Hattori .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Hattori, S., Zhou, XH. (2017). Meta-Analysis of Prognostic Studies Evaluating Time-Dependent Diagnostic and Predictive Capacities of Biomarkers. In: Matsui, S., Crowley, J. (eds) Frontiers of Biostatistical Methods and Applications in Clinical Oncology. Springer, Singapore. https://doi.org/10.1007/978-981-10-0126-0_16

Download citation

Publish with us

Policies and ethics