Skip to main content

A Smooth Basis for Clinical Subgroup Analysis

  • Chapter
  • First Online:
Frontiers of Biostatistical Methods and Applications in Clinical Oncology
  • 850 Accesses

Abstract

Data partitioning methods, including regression trees , have been widely used to describe subgroups of cancer patients with differing prognosis. We describe an alternative technique based on a modeling that characterizes subgroups through a smooth basis function representation of subgroups. The strategy allows the user to control the expected number of patients in the subgroup as well as the anticipated survival in the targeted group. An example based on data from a clinical trial for patients with Myeloma is used to illustrate the new method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barlogie B, Kyle RA, Anderson KC, Greipp PR, Lazarus HM, Hurd DD, McCoy J, Moore DF Jr, Dakhil SR, Lanier KS, Chapman RA, Cromer JN, Salmon SE, Durie B, Crowley JC. Standard chemotherapy compared with high-dose chemoradiotherapy for multiple myeloma: final results of phase III US Intergroup Trial S9321. J Clin Oncol. 2006;24(6):929–36.

    Article  Google Scholar 

  2. Breiman L. Random forests. Mach Learn. 2001;45:5–32.

    Article  MATH  Google Scholar 

  3. Breiman L, Friedman J, Olshen R, Stone C. Classification and regression trees. Pacific Grove: Wadsworth; 1984.

    MATH  Google Scholar 

  4. Crowley J. Optimal three group splits for survival data based on a running ordered logrank test, Frontiers of Biostatistical Methods. Berlin: Springer; 2016.

    Google Scholar 

  5. Davis R, Anderson J. Exponential survival trees. Stat Med. 1989;8:947–62.

    Article  Google Scholar 

  6. Friedman J, Fisher N. Bump hunting in high dimensional data(with discussion). Stat Comput. 1999;9:123–62.

    Article  Google Scholar 

  7. Gordon L, Olshen R. Tree-structured survival analysis. Cancer Treat Rep. 1985;69:1062–9.

    Google Scholar 

  8. Ishwaran H, Kogalur UB, Blackstone EH, Lauer MS. Random survival forests. Ann Appl Stat. 2008;2:841–60.

    Article  MathSciNet  MATH  Google Scholar 

  9. Kooperberg C, Stone C, Truong Y. Hazard regression. J Am Stat Assoc. 1995;90:78–94.

    Article  MathSciNet  MATH  Google Scholar 

  10. LeBlanc M, Crowley J. Relative risk regression trees for censored survival data. Biometrics. 1992;48:411–27.

    Article  Google Scholar 

  11. LeBlanc M, Crowley J. Survival trees by goodness of split. J Am Stat Assoc. 1993;88:457–67.

    Article  MathSciNet  MATH  Google Scholar 

  12. LeBlanc M, Moon J, Crowley J. Adaptive risk group refinement. Biometrics. 2005;61:370–8.

    Article  MathSciNet  MATH  Google Scholar 

  13. LeBlanc M, Moon J, Kooperberg C. Extreme regression. Biostatistics. 2006;13(106–122):2006.

    MATH  Google Scholar 

  14. Ruczinski I, Kooperberg C, LeBlanc M. Logic regression. J Graph Comput Stat. 2003;12:475–511.

    Article  MathSciNet  MATH  Google Scholar 

  15. Segal MR. Regression trees for censored data. Biometrics. 1988;44:35–47.

    Google Scholar 

  16. Sleeper LA, Harrington DP. Regression splines in teh cox model with application to covariate effects in liver disease. J Am Stat Assoc. 1990;85:941–9.

    Article  Google Scholar 

  17. Tibshirani R. Regression shrinkage and selection via the lasso. J R Stat Soc B. 1996;58:267–88.

    MathSciNet  MATH  Google Scholar 

  18. Zhang H, Singer B. Recursive partitioning in the health sciences. New York: Springer; 1999.

    Book  MATH  Google Scholar 

  19. Zou H, Hastie T. Regularization and variable selection via the elastic net. J R Stat Soc B. 2005;67:301–20.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael LeBlanc .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

LeBlanc, M. (2017). A Smooth Basis for Clinical Subgroup Analysis. In: Matsui, S., Crowley, J. (eds) Frontiers of Biostatistical Methods and Applications in Clinical Oncology. Springer, Singapore. https://doi.org/10.1007/978-981-10-0126-0_15

Download citation

Publish with us

Policies and ethics