Advertisement

Broadband and Tunable MMPA

  • Young Pak LeeEmail author
  • Joo Yull Rhee
  • Young Joon Yoo
  • Ki Won Kim
Chapter
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 236)

Abstract

Metamaterials (MMs) are artificial materials fabricated to have electromagnetic (EM) properties, which do not exist in nature. Among MMs, MM perfect absorbers (MMPAs) are promising candidates for the practical and rather immediate applications of MMs. In general, MMPA is composed of three layers. The first layer is periodically-arranged metallic patterns, whose structure and geometrical parameters should be carefully adjusted to fulfill the impedance-matching condition with the ambient, suppressing the reflection of incident EM waves. The second layer is a dielectric layer, which allows a space for the EM waves to be dissipated, and sometimes plays a role of resonance cavity to prolong the time taken by the EM waves inside the second layer. The third layer is a continuous metallic plate, blocking the remnant transmission. The properties of general MMPA are the absorption at specific frequency, the narrow absorption band and so on. Therefore, recently many researchers on MMPAs have focused on multi-band, broadband and tunable absorption. In this chapter, various researches so far about multi-band, broadband and tunable MMPAs are presented and reviewed.

Keywords

Metamaterial perfect absorber (MMPA) Multi-band MMPA Broadband MMPA ultra-broadband MMPA Frequency-tunable MMPA Absorption-tunable MMPA 

References

  1. 1.
    N.I. Landy, S. Sajuyigbe, J.J. Mock, D.R. Smith, W.J. Padilla, Perfect metamaterial absorber. Phys. Rev. Lett. 100, 207402 (2008)ADSCrossRefGoogle Scholar
  2. 2.
    Q.-Y. Wen, H.-W. Zhang, Y.-S. Xie, Q.-H. Yang, Y.-L. Liu, Dual band terahertz metamaterial absorber: design, fabrication, and characterization. Appl. Phys. Lett. 95, 241111 (2009)ADSCrossRefGoogle Scholar
  3. 3.
    B. Zhang, Y. Zhao, Q. Hao, B. Kiraly, I.-C. Khoo, S. Chen, T.J. Huang, Polarization-independent dual-band infrared perfect absorber based on a metal-dielectric-metal elliptical nanodisk array. Opt. Express 19, 15221 (2011)ADSCrossRefGoogle Scholar
  4. 4.
    X. Liu, T. Tyler, T. Starr, A.F. Starr, N.M. Jokerst, W.J. Padilla, Taming the blackbody with Infrared metamaterials as selective thermal emitters. Phys. Rev. Lett. 107, 045901 (2011)ADSCrossRefGoogle Scholar
  5. 5.
    Z.H. Jiang, S. Yun, F. Toor, D.H. Werner, T.S. Mayer, Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating. ACS Nano 5, 4641 (2011)CrossRefGoogle Scholar
  6. 6.
    X. Shen, Y. Yang, Y. Zang, J. Gu, J. Han, W. Zhang, T.J. Cui, Triple-band terahertz metamaterial absorber: design, experiment, and physical interpretation. Appl. Phys. Lett. 101, 154102 (2012)ADSCrossRefGoogle Scholar
  7. 7.
    H.-X. Xu, G.-M. Wang, M.-Q. Qi, J.-G. Liang, J.-Q. Gong, Z.-M. Xu, Triple-band polarization-insensitive wide-angle ultra-miniature metamaterial transmission line absorber. Phys. Rev. B 86, 205104 (2012)ADSCrossRefGoogle Scholar
  8. 8.
    J.W. Park, P.V. Tuong, J.Y. Rhee, K.W. Kim, W.H. Jang, E.H. Choi, L.Y. Chen, Y.P. Lee, Multi-band metamaterial absorber based on the arrangement of donut-type resonators. Opt. Express 21, 9691 (2013)ADSCrossRefGoogle Scholar
  9. 9.
    Y.J. Yoo, Y.J. Kim, P.V. Tuong, J.Y. Rhee, K.W. Kim, W.H. Jang, Y.H. Kim, H. Cheong, Y.P. Lee, Polarization-independent dual-band perfect absorber utilizing multiple magnetic resonances. Opt. Express 21, 32484 (2013)ADSCrossRefGoogle Scholar
  10. 10.
    H. Wakatsuchi, S. Greedy, C. Christopoulos, J. Paul, Customized broadband metamaterial absorbers for arbitrary polarization. Opt. Express 18, 22187 (2010)ADSCrossRefGoogle Scholar
  11. 11.
    L.K. Sun, H.F. Cheng, Y.J. Zhou, J. Wang, Broadband metamaterial absorber based on coupling resistive frequency selective surface. Opt. Express 20, 4675 (2012)ADSCrossRefGoogle Scholar
  12. 12.
    Y. Cui, J. Xu, K.H. Fung, Y. Jin, A. Kumar, S. He, N.X. Fang, A thin film broadband absorber based on multi-sized nanoantennas. Appl. Phys. Lett. 99, 253101 (2011)ADSCrossRefGoogle Scholar
  13. 13.
    D. Ye, Z. Wang, K. Xu, H. Li, J. Huangfu, Z. Wang, L. Ran, Ultra wideband dispersion control of a metamaterial surface for perfectly-matched-layer-like absorption. Phys. Rev. Lett. 111, 187402 (2013)ADSCrossRefGoogle Scholar
  14. 14.
    J. Zhu, Z. Ma, W. Sun, F. Ding, Q. He, L. Zhou, Y. Ma, Ultra-broadband terahertz metamaterial absorber. Appl. Phys. Lett. 105, 021102 (2014)ADSCrossRefGoogle Scholar
  15. 15.
    Y.J. Kim, Y.J. Yoo, K.W. Kim, J.Y. Rhee, Y.H. Kim, Y.P. Lee, Dual broadband metamaterial absorber. Opt. Express 23, 3861 (2015)ADSCrossRefGoogle Scholar
  16. 16.
    Q.-Y. Wen, H.-W. Zhang, Q.-H. Yang, Z. Chen, Y. Long, Y.-L. Jing, Y. Lin, P.-X. Zhang, A tunable hybrid metamaterial absorber based on vanadium oxide films. J. Phys. D Appl. Phys. 45, 235106 (2012). doi: 10.1088/0022-3727/45/23/235106 ADSCrossRefGoogle Scholar
  17. 17.
    D. Shrekenhamer, W.-C. Chen, W.J. Padilla, Liquid crystal tunable metamaterial absorber. Phys. Rev. Lett. 110, 177403 (2013)ADSCrossRefGoogle Scholar
  18. 18.
    J. Zhao, Q. Cheng, J. Chen, M.Q. Qi, W.X. Jiang, T.J. Cuil, A tunable metamaterial absorber using varactor diodes. New J. Phys. 15, 043049 (2013)ADSCrossRefGoogle Scholar
  19. 19.
    Y. Huang, G. Wen, W. Zhu, J. Li, L.-M. Si, M. Premaratne, Experimental demonstration of a magnetically tunable ferrite based metamaterial absorber. Opt. Express 22, 16408 (2014)ADSCrossRefGoogle Scholar
  20. 20.
    M.K. Hedayati, A.U. Zillohu, T. Strunskus, F. Faupel, M. Elbahri, Plasmonic tunable metamaterial absorber as ultraviolet protection film. Appl. Phys. Lett. 104, 041103 (2014)ADSCrossRefGoogle Scholar
  21. 21.
    Y.J. Yoo, S. Ju, S.Y. Park, Y.J. Kim, J. Bong, T. Lim, K.W. Kim, J.Y. Rhee, Y.P. Lee, Metamaterial absorber for electromagnetic waves in periodic water droplets. Sci. Rep. 5, 14018 (2015)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Singapore 2016

Authors and Affiliations

  • Young Pak Lee
    • 1
    Email author
  • Joo Yull Rhee
    • 2
  • Young Joon Yoo
    • 3
  • Ki Won Kim
    • 4
  1. 1.Department of PhysicsHanyang UniversitySeoulRepublic of Korea
  2. 2.Department of PhysicsSungkyunkwan UniversitySuwonRepublic of Korea
  3. 3.Department of PhysicsHanyang UniversitySeoulRepublic of Korea
  4. 4.Department of Information DisplaySunmoon UniversityAsanRepublic of Korea

Personalised recommendations