Skip to main content

Broadband and Tunable MMPA

  • Chapter
  • First Online:
Metamaterials for Perfect Absorption

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 236))

Abstract

Metamaterials (MMs) are artificial materials fabricated to have electromagnetic (EM) properties, which do not exist in nature. Among MMs, MM perfect absorbers (MMPAs) are promising candidates for the practical and rather immediate applications of MMs. In general, MMPA is composed of three layers. The first layer is periodically-arranged metallic patterns, whose structure and geometrical parameters should be carefully adjusted to fulfill the impedance-matching condition with the ambient, suppressing the reflection of incident EM waves. The second layer is a dielectric layer, which allows a space for the EM waves to be dissipated, and sometimes plays a role of resonance cavity to prolong the time taken by the EM waves inside the second layer. The third layer is a continuous metallic plate, blocking the remnant transmission. The properties of general MMPA are the absorption at specific frequency, the narrow absorption band and so on. Therefore, recently many researchers on MMPAs have focused on multi-band, broadband and tunable absorption. In this chapter, various researches so far about multi-band, broadband and tunable MMPAs are presented and reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. N.I. Landy, S. Sajuyigbe, J.J. Mock, D.R. Smith, W.J. Padilla, Perfect metamaterial absorber. Phys. Rev. Lett. 100, 207402 (2008)

    Article  ADS  Google Scholar 

  2. Q.-Y. Wen, H.-W. Zhang, Y.-S. Xie, Q.-H. Yang, Y.-L. Liu, Dual band terahertz metamaterial absorber: design, fabrication, and characterization. Appl. Phys. Lett. 95, 241111 (2009)

    Article  ADS  Google Scholar 

  3. B. Zhang, Y. Zhao, Q. Hao, B. Kiraly, I.-C. Khoo, S. Chen, T.J. Huang, Polarization-independent dual-band infrared perfect absorber based on a metal-dielectric-metal elliptical nanodisk array. Opt. Express 19, 15221 (2011)

    Article  ADS  Google Scholar 

  4. X. Liu, T. Tyler, T. Starr, A.F. Starr, N.M. Jokerst, W.J. Padilla, Taming the blackbody with Infrared metamaterials as selective thermal emitters. Phys. Rev. Lett. 107, 045901 (2011)

    Article  ADS  Google Scholar 

  5. Z.H. Jiang, S. Yun, F. Toor, D.H. Werner, T.S. Mayer, Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating. ACS Nano 5, 4641 (2011)

    Article  Google Scholar 

  6. X. Shen, Y. Yang, Y. Zang, J. Gu, J. Han, W. Zhang, T.J. Cui, Triple-band terahertz metamaterial absorber: design, experiment, and physical interpretation. Appl. Phys. Lett. 101, 154102 (2012)

    Article  ADS  Google Scholar 

  7. H.-X. Xu, G.-M. Wang, M.-Q. Qi, J.-G. Liang, J.-Q. Gong, Z.-M. Xu, Triple-band polarization-insensitive wide-angle ultra-miniature metamaterial transmission line absorber. Phys. Rev. B 86, 205104 (2012)

    Article  ADS  Google Scholar 

  8. J.W. Park, P.V. Tuong, J.Y. Rhee, K.W. Kim, W.H. Jang, E.H. Choi, L.Y. Chen, Y.P. Lee, Multi-band metamaterial absorber based on the arrangement of donut-type resonators. Opt. Express 21, 9691 (2013)

    Article  ADS  Google Scholar 

  9. Y.J. Yoo, Y.J. Kim, P.V. Tuong, J.Y. Rhee, K.W. Kim, W.H. Jang, Y.H. Kim, H. Cheong, Y.P. Lee, Polarization-independent dual-band perfect absorber utilizing multiple magnetic resonances. Opt. Express 21, 32484 (2013)

    Article  ADS  Google Scholar 

  10. H. Wakatsuchi, S. Greedy, C. Christopoulos, J. Paul, Customized broadband metamaterial absorbers for arbitrary polarization. Opt. Express 18, 22187 (2010)

    Article  ADS  Google Scholar 

  11. L.K. Sun, H.F. Cheng, Y.J. Zhou, J. Wang, Broadband metamaterial absorber based on coupling resistive frequency selective surface. Opt. Express 20, 4675 (2012)

    Article  ADS  Google Scholar 

  12. Y. Cui, J. Xu, K.H. Fung, Y. Jin, A. Kumar, S. He, N.X. Fang, A thin film broadband absorber based on multi-sized nanoantennas. Appl. Phys. Lett. 99, 253101 (2011)

    Article  ADS  Google Scholar 

  13. D. Ye, Z. Wang, K. Xu, H. Li, J. Huangfu, Z. Wang, L. Ran, Ultra wideband dispersion control of a metamaterial surface for perfectly-matched-layer-like absorption. Phys. Rev. Lett. 111, 187402 (2013)

    Article  ADS  Google Scholar 

  14. J. Zhu, Z. Ma, W. Sun, F. Ding, Q. He, L. Zhou, Y. Ma, Ultra-broadband terahertz metamaterial absorber. Appl. Phys. Lett. 105, 021102 (2014)

    Article  ADS  Google Scholar 

  15. Y.J. Kim, Y.J. Yoo, K.W. Kim, J.Y. Rhee, Y.H. Kim, Y.P. Lee, Dual broadband metamaterial absorber. Opt. Express 23, 3861 (2015)

    Article  ADS  Google Scholar 

  16. Q.-Y. Wen, H.-W. Zhang, Q.-H. Yang, Z. Chen, Y. Long, Y.-L. Jing, Y. Lin, P.-X. Zhang, A tunable hybrid metamaterial absorber based on vanadium oxide films. J. Phys. D Appl. Phys. 45, 235106 (2012). doi:10.1088/0022-3727/45/23/235106

    Article  ADS  Google Scholar 

  17. D. Shrekenhamer, W.-C. Chen, W.J. Padilla, Liquid crystal tunable metamaterial absorber. Phys. Rev. Lett. 110, 177403 (2013)

    Article  ADS  Google Scholar 

  18. J. Zhao, Q. Cheng, J. Chen, M.Q. Qi, W.X. Jiang, T.J. Cuil, A tunable metamaterial absorber using varactor diodes. New J. Phys. 15, 043049 (2013)

    Article  ADS  Google Scholar 

  19. Y. Huang, G. Wen, W. Zhu, J. Li, L.-M. Si, M. Premaratne, Experimental demonstration of a magnetically tunable ferrite based metamaterial absorber. Opt. Express 22, 16408 (2014)

    Article  ADS  Google Scholar 

  20. M.K. Hedayati, A.U. Zillohu, T. Strunskus, F. Faupel, M. Elbahri, Plasmonic tunable metamaterial absorber as ultraviolet protection film. Appl. Phys. Lett. 104, 041103 (2014)

    Article  ADS  Google Scholar 

  21. Y.J. Yoo, S. Ju, S.Y. Park, Y.J. Kim, J. Bong, T. Lim, K.W. Kim, J.Y. Rhee, Y.P. Lee, Metamaterial absorber for electromagnetic waves in periodic water droplets. Sci. Rep. 5, 14018 (2015)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young Pak Lee .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Lee, Y.P., Rhee, J.Y., Yoo, Y.J., Kim, K.W. (2016). Broadband and Tunable MMPA. In: Metamaterials for Perfect Absorption. Springer Series in Materials Science, vol 236. Springer, Singapore. https://doi.org/10.1007/978-981-10-0105-5_5

Download citation

Publish with us

Policies and ethics