MMPA, Based on Electromagnetically-Induced Transparency

  • Young Pak LeeEmail author
  • Joo Yull Rhee
  • Young Joon Yoo
  • Ki Won Kim
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 236)


Interests in asymmetric metamaterials (MMs) are increasing due to the existence of fascinating phenomena, such as high-quality-factor Fano resonance, analog of electromagnetically-induced transparency (EIT), slow light and chirality. However, there have been few researches studying the application of them to MM perfect absorbers. In this chapter, we discuss about the exploitation of EIT effect and the asymmetric resonators in achieving MM perfect absorbers. By considering the phase coupling between resonators, the EIT can be transformed into the electromagnetically-induced absorption, giving rise to an ultra-narrow and high quality-factor absorption. In addition, breaking the symmetry of resonators can induce multi-resonance that is suitable for developing multi-band or broadband absorption.


Metamaterial Electromagnetically-induced transparency Electromagnetically-induced absorption Asymmetry resonators Perfect absorption Broadband absorption 


  1. 1.
    S.E. Harris, Phys. Today 50, 36 (1997)CrossRefGoogle Scholar
  2. 2.
    M. Bajcsy, A.S. Zibrov, M.D. Lukin, Nature 426, 638 (2003)ADSCrossRefGoogle Scholar
  3. 3.
    W. Harshawardhan, G.S. Agarwal, Phys. Rev. A 53, 1812 (1996)ADSCrossRefGoogle Scholar
  4. 4.
    S. Zhang, D.A. Genov, Y. Wang, M. Liu, X. Zhang, Phys. Rev. Lett. 101, 047401 (2008)ADSCrossRefGoogle Scholar
  5. 5.
    N. Papasimakis, V.A. Fedotov, N.I. Zheludev, S.L. Prosvirnin, Phys. Rev. Lett. 101(4), 253903 (2008)ADSCrossRefGoogle Scholar
  6. 6.
    N. Liu, L. Langguth, T. Weiss, J. Kastel, M. Fleischhauer, T. Pfau, H. Giessen, Nature Mater. 8, 758 (2009)ADSCrossRefGoogle Scholar
  7. 7.
    N. Papasimakis, Y.H. Fu, V.A. Fedotov, S.L. Prosvirnin, D.P. Tsai, N.I. Zheludev, Appl. Phys. Lett. 94(3), 211902 (2009)ADSCrossRefGoogle Scholar
  8. 8.
    S.Y. Chiam, R. Singh, C. Rockstuhl, F. Lederer, W.L. Zhang, A.A. Bettiol, Phys. Rev. B 80(4), 153103 (2009)ADSCrossRefGoogle Scholar
  9. 9.
    L. Zhang, P. Tassin, T. Koschny, C. Kurter, S.M. Anlage, C.M. Soukoulis, Appl. Phys. Lett. 97(3), 241904 (2010)ADSCrossRefGoogle Scholar
  10. 10.
    J.J. Zhang, S.S. Xiao, C. Jeppesen, A. Kristensen, N.A. Mortensen, Opt. Express. 18, 17187 (2010)ADSCrossRefGoogle Scholar
  11. 11.
    R. Singh, I.A.I. Al-Naib, Y.P. Yang, D.R. Chowdhury, W. Cao, C. Rockstuhl, T. Ozaki, R. Morandotti, W.L. Zhang, Appl. Phys. Lett. 99, 201107 (2011)ADSCrossRefGoogle Scholar
  12. 12.
    J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S.A. Maier, Z. Tian, A.K. Azad, H.-T. Chen, A.J. Taylor, J. Han, W. Zhang, Nat. Commun. 3, 1151 (2012)ADSCrossRefGoogle Scholar
  13. 13.
    W. Cao, R. Singh, C.H. Zhang, J.G. Han, M. Tonouchi, W.L. Zhang, Appl. Phys. Lett. 103(5), 101106 (2013)ADSCrossRefGoogle Scholar
  14. 14.
    S.H. Mousavi, A.B. Khanikaev, J. Allen, M. Allen, G. Shvets, Phys. Rev. Lett. 112(6), 117402 (2014)ADSCrossRefGoogle Scholar
  15. 15.
    Y.M. Yang, Kravchenko, D.P. Briggs, J. Valentine, Nat. Commun. 5(7), 5753 (2014)ADSCrossRefGoogle Scholar
  16. 16.
    N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sonnichsen, H. Giessen, Nano Lett. 10, 1103 (2010)ADSCrossRefGoogle Scholar
  17. 17.
    F.Y. Meng, Q. Wu, D. Erni, K. Wu, J.C. Lee, IEEE Trans. Microw. Theory Tech. 60, 3013 (2012)CrossRefGoogle Scholar
  18. 18.
    B. Gallinet, O.J.F. Martin, ACS Nano 7, 6978 (2013)CrossRefGoogle Scholar
  19. 19.
    C.H. Wu, A.B. Khanikaev, G. Shvets, Phys. Rev. Lett. 106(4), 107403 (2011)ADSCrossRefGoogle Scholar
  20. 20.
    K.L. Tsakmakidis, A.D. Boardman, O. Hess, Nature 450, 397 (2007)ADSCrossRefGoogle Scholar
  21. 21.
    V.A. Fedotov, M. Rose, S.L. Prosvirnin, N. Papasimakis, N.I. Zheludev, Phy. Rev. Lett. 99, 147401 (2007)ADSCrossRefGoogle Scholar
  22. 22.
    R. Singh, C. Rockstuhl, F. Lederer, W.L. Zhang, Phys. Rev. B 79, 085111 (2009)ADSCrossRefGoogle Scholar
  23. 23.
    D.R. Chowdhury, R. Singh, A.J. Taylor, H.T. Chen, A.K. Azad, Appl. Phys. Lett. 102(5), 011122 (2013)ADSCrossRefGoogle Scholar
  24. 24.
    P. Tassin, L. Zhang, R.K. Zhao, A. Jain, T. Koschny, C.M. Soukoulis, Phys. Rev. Lett. 109(5), 187401 (2012)ADSCrossRefGoogle Scholar
  25. 25.
    D.R. Chowdhury, X. Su, Y. Zeng, X. Chen, A.J. Taylor, A. Azad, Opt. Express. 22, 19401 (2014)ADSCrossRefGoogle Scholar
  26. 26.
    F. Hao, P. Nordlander, Y. Sonnefraud, P. Van Dorpe, S.A. Maier, ACS Nano 3, 643 (2009)CrossRefGoogle Scholar
  27. 27.
    N.E.J. Omaghali, V. Tkachenko, A. Andreone, G. Abbate, Sensors 14, 272 (2014)CrossRefGoogle Scholar
  28. 28.
    R. Taubert, M. Hentschel, J. Kastel, H. Giessen, Nano Lett. 12, 1367 (2012)ADSCrossRefGoogle Scholar
  29. 29.
    J. He, P. Ding, J. Wang, C. Fan, E. Liang, Opt. Express. 23, 6083 (2015)ADSCrossRefGoogle Scholar
  30. 30.
    N.V. Dung, B.S. Tung, B.X. Khuyen, Y.J. Yoo, Y.J. Kim, J.Y. Rhee, V.D. Lam, Y.P. Lee, J. Phys. D Appl. Phys. 48, 375103 (2015). doi: 10.1088/0022-3727/48/37/375103 CrossRefGoogle Scholar
  31. 31.
    B.S. Tung, B.X. Khuyen, N.V. Dung, V.D. Lam, Y.H. Kim, H. Cheong, Y.P. Lee, Opt. Commun. 356, 362 (2015)ADSCrossRefGoogle Scholar
  32. 32.
    Y. Wen, W. Ma, J. Bailey, G. Matmon, X. Yu, IEEE Trans. THz Sci. Technol. 5, 406 (2015)CrossRefGoogle Scholar
  33. 33.
    B.-X. Wang, L.-L. Wang, G.-Z. Wang, W.-Q. Huang, X. Zhai, X.-F. Li, Opt. Commun. 325, 78 (2014)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Singapore 2016

Authors and Affiliations

  • Young Pak Lee
    • 1
    Email author
  • Joo Yull Rhee
    • 2
  • Young Joon Yoo
    • 3
  • Ki Won Kim
    • 4
  1. 1.Department of PhysicsHanyang UniversitySeoulRepublic of Korea
  2. 2.Department of PhysicsSungkyunkwan UniversitySuwonRepublic of Korea
  3. 3.Department of PhysicsHanyang UniversitySeoulRepublic of Korea
  4. 4.Department of Information DisplaySunmoon UniversityAsanRepublic of Korea

Personalised recommendations