Theoretical Backgrounds

  • Young Pak LeeEmail author
  • Joo Yull Rhee
  • Young Joon Yoo
  • Ki Won Kim
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 236)


In this chapter, some theoretical aspects of propagation of electromagnetic (EM) waves in matters and their interaction with matters, which are essential to understand the phenomena occurring in metamaterial perfect absorber (MMPA) and to design and/or optimize the MMPA structures, will be presented. A brief introduction of broadband and resonant absorbers is provided. After a brief discussion on MMPA is given, the effective-medium approximation, which is essential for extracting various parameters from the simulated or the measured spectrum of MMPA, and its validity limit will be discussed. The equivalent-circuit theory and the transmission-line theory, will be briefly presented, and the introduction of several numerical techniques, such as finite-difference time-domain method, finite-element method and transfer-matrix method, will conclude this chapter.


Maxwell’s equations Perfect electromagnetic-wave absorbers Geometrical-transition absorbers Low-density absorbers Salisbury screens Circuit-analog absorbers Metamaterial-based perfect absorbers Effective-medium approximation Equivalent-circuit theory Transmission-line theory Numerical techniques Finite-difference time-domain method Finite-element method Transfer-matrix method 


  1. 1.
    J. Jackson, Classical Electrodynamics, 3rd edn. (Wiley, 1998)Google Scholar
  2. 2.
    C. Brau, Modern Problems in Classical Electrodynamics (OUP USA, 2004)Google Scholar
  3. 3.
    J. Reitz, F. Milford, R. Christy, Foundations of Electromagnetic Theory (Pearson/Addison-Wesley, New York, 2009)Google Scholar
  4. 4.
    V.G. Veselago, Sov. Phys. Usp. 10, 509 (1968)ADSCrossRefGoogle Scholar
  5. 5.
    J. Pendry, A. Holden, D. Robbins, W. Stewart, IEEE T. Microw. Theory 47, 2075 (1999)CrossRefGoogle Scholar
  6. 6.
    D.R. Smith, W.J. Padilla, D.C. Vier, S.C. Nemat-Nasser, S. Schultz, Phys. Rev. Lett. 84, 4184 (2000)ADSCrossRefGoogle Scholar
  7. 7.
    G.T. Ruck, D.E. Barrick, W.D. Stuart, A.C.K. Krichbaum, Radar Cross Section Handbook, vol. 2 (Plenum, 1970)Google Scholar
  8. 8.
    K. Ford, B. Chambers, I.E.E.E.T. Antenn, Propag. 56, 133 (2008)CrossRefGoogle Scholar
  9. 9.
    D. Holtby, K. Ford, B. Chambers, IET Radar Sonar Nav. 5, 483 (2011)CrossRefGoogle Scholar
  10. 10.
    G. Manara, A. Monorchio, R. Mittra, Electron. Lett. 35, 1400 (1999)CrossRefGoogle Scholar
  11. 11.
  12. 12.
    O. Kazmina, V. Suslyaev, M. Dushkina, B. Semukhin, IOP Conf. Ser.: Mater. Sci. Eng. 81, 012036 (2015)CrossRefGoogle Scholar
  13. 13.
    G. Li, T. Xie, S. Yang, J. Jin, J. Jiang, J. Phys. Chem. C 116, 9196 (2012)CrossRefGoogle Scholar
  14. 14.
    S.E. Lee, O. Choi, H.T. Hahn, J. Appl. Phy. 104, 033705 (2008)ADSCrossRefGoogle Scholar
  15. 15.
    X. Ji, M. Lu, F. Ye, Q. Zhou, Adv. Mech. Eng. Appl. 3, 294 (2012)Google Scholar
  16. 16.
    W.W. Salisbury. Absorbent body for electromagnetic waves, US Patent 2599944 (1952)Google Scholar
  17. 17.
    B.A. Munk, Frequency Selective Surfaces: Theory and Design (Wiley-Interscience, 2000)Google Scholar
  18. 18.
    H. Severin, I.R.E.T. Antenn, Prop. 4, 385 (1956)Google Scholar
  19. 19.
    W. Dällenbach, W. Kleinsteuber, Hochfreq. u Elektroak 51, 152 (1938)Google Scholar
  20. 20.
    B. Munk, P. Munk, J. Pryor, IEEE T. Antenn. Prop. 55, 186 (2007)ADSCrossRefGoogle Scholar
  21. 21.
    H.Y. Zheng, X.R. Jin, J.W. Park, Y.H. Lu, J.Y. Rhee, W.H. Jang, H. Cheong, Y.P. Lee, Opt. Express 20, 24002 (2012)ADSCrossRefGoogle Scholar
  22. 22.
    N.I. Landy, S. Sajuyigbe, J.J. Mock, D.R. Smith, W.J. Padilla, Phys. Rev. Lett. 100, 207402 (2008)ADSCrossRefGoogle Scholar
  23. 23.
    C. Hu, X. Li, Q. Feng, X. Chen, X. Luo, Opt. Express 18, 6598 (2010)ADSCrossRefGoogle Scholar
  24. 24.
    L. Li, J. Wang, H. Du, J. Wang, S. Qu, Z. Xu, AIP Adv. 5, 017147 (2015)ADSCrossRefGoogle Scholar
  25. 25.
    J.W. Lee, M.A. Seo, J.Y. Sohn, Y.H. Ahn, D.S. Kim, S.C. Jeoung, C. Lienau, Q.H. Park, Opt. Express 13, 10681 (2005)ADSCrossRefGoogle Scholar
  26. 26.
    P. Tuong, J. Park, V. Lam, W. Jang, S. Nikitov, Y. Lee, Opt. Comm. 295, 17 (2013)ADSCrossRefGoogle Scholar
  27. 27.
    A. Vora, J. Gwamuri, N. Pala, A. Kulkarni, J.M. Pearce, D.. Güney, Sci. Rep. 4 (2014)Google Scholar
  28. 28.
    M.A. Ordal, L.L. Long, R.J. Bell, S.E. Bell, R.R. Bell, R.W. Alexander, C.A. Ward, Appl. Opt. 22, 1099 (1983)ADSCrossRefGoogle Scholar
  29. 29.
    J.Y. Rhee, Y.J. Yoo, K.W. Kim, Y.J. Kim, Y.P. Lee, J. Electromagn. Waves Appl. 28, 1541 (2014)CrossRefGoogle Scholar
  30. 30.
    D.A.G. Bruggeman, Ann. Phys. (Leipzig) 24, 636 (1935)ADSCrossRefGoogle Scholar
  31. 31.
    R. Landauer, AIP Conf. Proc. 40, 2 (1978)ADSCrossRefGoogle Scholar
  32. 32.
    J. Garnett, Phil. Trans. R. Soc. Lond. 203, 636 (1904)CrossRefGoogle Scholar
  33. 33.
    W.S. Weiglhofer, A. Lakhtakia, B. Michel, Microw. Opt. Techn. Lett. 15, 263 (1997)CrossRefGoogle Scholar
  34. 34.
    J.Y. Rhee, X. Wang, B.N. Harmon, D.W. Lynch, Phys. Rev. B 51, 17390 (1995)ADSCrossRefGoogle Scholar
  35. 35.
    S. Resink, E. Hondebrink, W. Steenbergen, Opt. Express 22, 3564 (2014)ADSCrossRefGoogle Scholar
  36. 36.
    Y. Wu, J. Li, Z.Q. Zhang, C.T. Chan, Phys. Rev. B 74, 085111 (2006)ADSCrossRefGoogle Scholar
  37. 37.
    B.A. Slovick, Z.G. Yu, S. Krishnamurthy, Phys. Rev. B 89, 155118 (2014)ADSCrossRefGoogle Scholar
  38. 38.
    J. Zhou, L. Zhang, G. Tuttle, T. Koschny, C.M. Soukoulis, Phys. Rev. B 73, 041101 (2006)ADSCrossRefGoogle Scholar
  39. 39.
    V.D. Lam, J.B. Kim, S.J. Lee, Y.P. Lee, J.Y. Rhee, Opt. Express 15, 16651 (2007)ADSCrossRefGoogle Scholar
  40. 40.
    V.D. Lam, J.B. Kim, N.T. Tung, S.J. Lee, Y.P. Lee, J.Y. Rhee, Opt. Express 16, 5934 (2008)ADSCrossRefGoogle Scholar
  41. 41.
    Y.Q. Pang, Y.J. Zhou, J. Wang, J. Appl. Phys. 110 (2011)Google Scholar
  42. 42.
    O. Heaviside, Electrical Papers, vol. 2 (Macmillan, 1894)Google Scholar
  43. 43.
    D.B. Davidson, Computational Electromagnetics for RF and Microwave Engineering, 2nd edn. (Cambridge University Press, Cambridge, New York, 2010)CrossRefGoogle Scholar
  44. 44.
    R. Courant, K.O. Friedrichs, H. Lewy, Math. Ann. 100, 32–74 (1928)Google Scholar

Copyright information

© Springer Science+Business Media Singapore 2016

Authors and Affiliations

  • Young Pak Lee
    • 1
    Email author
  • Joo Yull Rhee
    • 2
  • Young Joon Yoo
    • 3
  • Ki Won Kim
    • 4
  1. 1.Department of PhysicsHanyang UniversitySeoulRepublic of South Korea
  2. 2.Department of PhysicsSungkyunkwan UniversitySuwonRepublic of South Korea
  3. 3.Department of PhysicsHanyang UniversitySeoulRepublic of South Korea
  4. 4.Department of Information DisplaySunmoon UniversityAsanRepublic of South Korea

Personalised recommendations