Skip to main content

Multifunctional Hollow Mesoporous Silica Nanoparticles for MR/US Imaging-Guided Tumor Therapy

  • Chapter
  • First Online:
Advances in Nanotheranostics II

Part of the book series: Springer Series in Biomaterials Science and Engineering ((SSBSE,volume 7))

Abstract

Biocompatible mesoporous silica nanoparticles and their multifunctionalization have attracted ever-increasing attentions in the biomedical research fields recently. In this chapter, we particularly focus on the controlled fabrication of hollow mesoporous silica nanoparticles (HMSNs) for their applications in magnetic resonance imaging (MRI), ultrasonography (US), and MRI/US-guided cancer synergistic therapy. The content of this chapter includes: (1) design, synthesis, surface modification and multifunctionalization of HMSNs with high dispersity and desirable crucial structural/compositional parameters, (2) HMSNs as the contrast agents (CAs) for MR imaging, (3) HMSN-based nanocomposites for US imaging, and (4) HMSN-based nanosystems for high-intensity focused ultrasound (HIFU) synergistic therapy. The unsolved critical issues and future developments of HMSNs for clinical translation are also briefly outlooked.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. LaVan DA, McGuire T, Langer R (2003) Small-scale systems for in vivo drug delivery. Nat Biotechnol 21:1184–1191

    Article  Google Scholar 

  2. Wagner V, Dullaart A, Bock AK, Zweck A (2006) The emerging nanomedicine landscape. Nat Biotechnol 24:1211–1217

    Article  Google Scholar 

  3. Medarova Z, Pham W, Farrar C, Petkova V, Moore A (2007) In vivo imaging of siRNA delivery and silencing in tumors. Nat Med 13:372–377

    Article  Google Scholar 

  4. Ashley CE, Carnes EC, Phillips GK, Padilla D, Durfee PN, Brown PA et al (2011) The targeted delivery of multicomponent cargos to cancer cells by nanoporous particle-supported lipid bilayers. Nat Mater 10:389–397

    Article  Google Scholar 

  5. Chen Y, Chen H, Shi J (2013) In vivo bio-safety evaluations and diagnostic/therapeutic applications of chemically designed mesoporous silica nanoparticles. Adv Mater 25:3144–3176

    Article  Google Scholar 

  6. Chen Y, Chen H, Shi J (2014) Inorganic nanoparticle-based drug codelivery nanosystems to overcome the multidrug resistance of cancer cells. Mol Pharm 11:2495–2510

    Article  Google Scholar 

  7. Rabin O, Perez JM, Grimm J, Wojtkiewicz G, Weissleder R (2006) An X-ray computed tomography imaging agent based on long-circulating bismuth sulphide nanoparticles. Nat Mater 5:118–122

    Article  Google Scholar 

  8. Ananta JS, Godin B, Sethi R, Moriggi L, Liu XW, Serda RE et al (2010) Geometrical confinement of gadolinium-based contrast agents in nanoporous particles enhances T-1 contrast. Nat Nanotechnol 5:815–821

    Article  Google Scholar 

  9. Chen Y, Chen H, Shi J (2014) Drug delivery/imaging multifunctionality of mesoporous silica-based composite nanostructures. Expert Opin Drug Deliv 11:917–930

    Article  Google Scholar 

  10. Constantinides PP, Lambert KJ, Tustian AK, Schneider B, Lalji S, Ma WW et al (2000) Formulation development and antitumor activity of a filter-sterilizable emulsion of paclitaxel. Pharm Res 17:175–182

    Article  Google Scholar 

  11. Ganta S, Amiji M (2009) Coadministration of paclitaxel and curcumin in nanoemulsion formulations to overcome multidrug resistance in tumor cells. Mol Pharm 6:928–939

    Article  Google Scholar 

  12. Nakano M (2000) Places of emulsions in drug delivery. Adv Drug Deliv Rev 45:1–4

    Article  Google Scholar 

  13. Allen TM, Cullis PR (2004) Drug delivery systems: entering the mainstream. Science 303:1818–1822

    Article  Google Scholar 

  14. Ambrogio MW, Thomas CR, Zhao YL, Zink JI, Stoddartt JF (2011) Mechanized silica nanoparticles: a new frontier in theranostic nanomedicine. Acc Chem Res 44:903–913

    Article  Google Scholar 

  15. Li ZX, Barnes JC, Bosoy A, Stoddart JF, Zink JI (2012) Mesoporous silica nanoparticles in biomedical applications. Chem Soc Rev 41:2590–2605

    Article  Google Scholar 

  16. Chen Y, Ye D, Wu M, Chen H, Zhang L, Shi J, Wang L (2014) Breaking up of two-dimensional MnO2 nanosheets promotes ultrasensitive PH-triggered theranostics of cancer. Adv Mater 26(41):7019–7026

    Article  Google Scholar 

  17. Chen Y, Xu P, Shu Z, Wu M, Wang L, Zhang S et al (2014) Multifunctional graphene oxide-based triple stimuli-responsive nanotheranostics. Adv Funct Mater 24:4386–4396

    Article  Google Scholar 

  18. Feng LY, Wu L, Qu XG (2013) New horizons for diagnostics and therapeutic applications of graphene and graphene oxide. Adv Mater 25:168–186

    Article  Google Scholar 

  19. Mao HY, Laurent S, Chen W, Akhavan O, Imani M, Ashkarran AA et al (2013) Graphene: promises, facts, opportunities, and challenges in nanomedicine. Chem Rev 113:3407–3424

    Article  Google Scholar 

  20. Yang K, Feng LZ, Shi XZ, Liu Z (2013) Nano-graphene in biomedicine: theranostic applications. Chem Soc Rev 42:530–547

    Article  Google Scholar 

  21. Chou SS, Kaehr B, Kim J, Foley BM, De M, Hopkins PE et al (2013) Chemically exfoliated MoS2 as near-infrared photothermal agents. Angew Chem Int Ed 52:4160–4164

    Article  Google Scholar 

  22. Liu T, Wang C, Gu X, Gong H, Cheng L, Shi X et al (2014) Drug delivery with PEGylated MoS2 nano-sheets for combined photothermal and chemotherapy of cancer. Adv Mater 26:3433–3440

    Article  Google Scholar 

  23. Chen Y, Xu P, Wu M, Meng Q, Chen H, Shu Z et al (2014) Colloidal RBC-shaped, hydrophilic, and hollow mesoporous carbon nanocapsules for highly efficient biomedical engineering. Adv Mater 26:4294–4301

    Article  Google Scholar 

  24. Wu SH, Hung Y, Mou CY (2011) Mesoporous silica nanoparticles as nanocarriers. Chem Commun 47:9972–9985

    Article  Google Scholar 

  25. Rosenholm JM, Mamaeva V, Sahlgren C, Linden M (2012) Nanoparticles in targeted cancer therapy: mesoporous silica nanoparticles entering preclinical development stage. Nanomedicine 7:111–120

    Article  Google Scholar 

  26. Vallet-Regi M (2006) Ordered mesoporous materials in the context of drug delivery systems and bone tissue engineering. Chem Eur J 12:5934–5943

    Article  Google Scholar 

  27. Lin YS, Hurley KR, Haynes CL (2012) Critical considerations in the biomedical use of mesoporous silica nanoparticles. J Phys Chem Lett 3:364–374

    Article  Google Scholar 

  28. Lee JE, Lee N, Kim T, Kim J, Hyeon T (2011) Multifunctional mesoporous silica nanocomposite nanoparticles for theranostic applications. Acc Chem Res 44:893–902

    Article  Google Scholar 

  29. Asefa T, Tao Z (2012) Biocompatibility of mesoporous silica nanoparticles. Chem Res Toxicol

    Google Scholar 

  30. Chen Y, Chen HR, Guo LM, He QJ, Chen F, Zhou J et al (2010) Hollow/rattle-type mesoporous nanostructures by a structural difference-based selective etching strategy. ACS Nano 4:529–539

    Article  Google Scholar 

  31. Fang WJ, Tang SH, Liu PX, Fang XL, Gong JW, Zheng NF (2012) Pd nanosheet-covered hollow mesoporous silica nanoparticles as a platform for the chemo-photothermal treatment of cancer cells. Small 8:3816–3822

    Article  Google Scholar 

  32. Gao Y, Chen Y, Ji XF, He XY, Yin Q, Zhang ZW et al (2011) Controlled intracellular release of doxorubicin in multidrug-resistant cancer cells by tuning the shell-pore sizes of mesoporous silica nanoparticles. ACS Nano 5:9788–9798

    Article  Google Scholar 

  33. Liu YY, Miyoshi H, Nakamura M (2007) Novel drug delivery system of hollow mesoporous silica nanocapsules with thin shells: preparation and fluorescein isothiocyanate (FITC) release kinetics. Colloids Surf B Biointerfaces 58:180–187

    Article  Google Scholar 

  34. Zhang K, Chen HR, Zheng YY, Chen Y, Ma M, Wang X et al (2012) A facile in situ hydrophobic layer protected selective etching strategy for the synchronous synthesis/modification of hollow or rattle-type silica nanoconstructs. J Mater Chem 22:12553–12561

    Article  Google Scholar 

  35. Zhu YF, Shi JL, Shen WH, Chen HR, Dong XP, Ruan ML (2005) Preparation of novel hollow mesoporous silica spheres and their sustained-release property. Nanotechnology 16:2633–2638

    Article  Google Scholar 

  36. Zhu YF, Shi JL, Shen WH, Dong XP, Feng JW, Ruan ML et al (2005) Stimuli-responsive controlled drug release from a hollow mesoporous silica sphere/polyelectrolyte multilayer core-shell structure. Angew Chem Int Ed 44:5083–5087

    Article  Google Scholar 

  37. Zhu YF, Kockrick E, Ikoma T, Hanagata N, Kaskel S (2009) An efficient route to rattle-type Fe3O4@SiO2 hollow mesoporous spheres using colloidal carbon spheres templates. Chem Mater 21:2547–2553

    Article  Google Scholar 

  38. Zhu YF, Shi JL, Chen HR, Shen WH, Dong XP (2005) A facile method to synthesize novel hollow mesoporous silica spheres and advanced storage property. Microporous Mesoporous Mater 84:218–222

    Article  Google Scholar 

  39. Zhu YF, Shi JL, Li YS, Chen HR, Shen WH, Dong XP (2005) Storage and release of ibuprofen drug molecules in hollow mesoporous silica spheres with modified pore surface. Microporous Mesoporous Mater 85:75–81

    Article  Google Scholar 

  40. Chen Y, Chen H-R, Shi J-L (2013) Construction of homogenous/heterogeneous hollow mesoporous silica nanostructures by silica-etching chemistry: principles, synthesis, and applications. Acc Chem Res 47:125–137

    Article  Google Scholar 

  41. Chen Y, Chen HR, Guo LM, Shi JL (2011) Magnetic hollow mesoporous silica nanospheres: facile fabrication and ultrafast immobilization of enzymes. J Nanosci Nanotechnol 11:10844–10848

    Article  Google Scholar 

  42. Chen Y, Chen HR, Ma M, Chen F, Guo LM, Zhang LX et al (2011) Double mesoporous silica shelled spherical/ellipsoidal nanostructures: synthesis and hydrophilic/hydrophobic anticancer drug delivery. J Mater Chem 21:5290–5298

    Article  Google Scholar 

  43. Cheng K, Sun S (2010) Recent advances in syntheses and therapeutic applications of multifunctional porous hollow nanoparticles. Nano Today 5:183–196

    Article  Google Scholar 

  44. Liu TL, Li LL, Fu CH, Liu HY, Chen D, Tang FQ (2012) Pathological mechanisms of liver injury caused by continuous intraperitoneal injection of silica nanoparticles. Biomaterials 33:2399–2407

    Article  Google Scholar 

  45. Liu HY, Liu TL, Wu XL, Li LL, Tan LF, Chen D et al (2012) Targeting gold nanoshells on silica nanorattles: a drug cocktail to fight breast tumors via a single irradiation with near-infrared laser light. Adv Mater 24:755–761

    Article  Google Scholar 

  46. Li LL, Tang FQ, Liu HY, Liu TL, Hao NJ, Chen D et al (2010) In vivo delivery of silica nanorattle encapsulated docetaxel for liver cancer therapy with low toxicity and high efficacy. ACS Nano 4:6874–6882

    Article  Google Scholar 

  47. Li LL, Guan YQ, Liu HY, Hao NJ, Liu TL, Meng XW et al (2011) Silica nanorattle-doxorubicin-anchored mesenchymal stem cells for tumor-tropic therapy. ACS Nano 5:7462–7470

    Article  Google Scholar 

  48. Chen Y, Chen HR, Zeng DP, Tian YB, Chen F, Feng JW et al (2010) Core/shell structured hollow mesoporous nanocapsules: a potential platform for simultaneous cell imaging and anticancer drug delivery. ACS Nano 4:6001–6013

    Article  Google Scholar 

  49. An L, Hu H, Du J, Wei J, Wang L, Yang H et al (2014) Paramagnetic hollow silica nanospheres for in vivo targeted ultrasound and magnetic resonance imaging. Biomaterials 35:5381–5392

    Article  Google Scholar 

  50. Hu H, Zhou H, Du J, Wang ZQ, An L, Yang H et al (2011) Biocompatiable hollow silica microspheres as novel ultrasound contrast agents for in vivo imaging. J Mater Chem 21:6576–6583

    Article  Google Scholar 

  51. Lin PL, Eckersley RJ, Hall EAH (2009) Ultrabubble: a laminated ultrasound contrast agent with narrow size range. Adv Mater 21:3949–3952

    Article  Google Scholar 

  52. Martinez HP, Kono Y, Blair SL, Sandoval S, Wang-Rodriguez J, Mattrey RF et al (2010) Hard shell gas-filled contrast enhancement particles for colour doppler ultrasound imaging of tumors. Medchemcomm 1:266–270

    Article  Google Scholar 

  53. Lou XW, Archer LA, Yang ZC (2008) Hollow micro-/nanostructures: synthesis and applications. Adv Mater 20:3987–4019

    Article  Google Scholar 

  54. Caruso F, Caruso RA, Mohwald H (1998) Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating. Science 282:1111–1114

    Article  Google Scholar 

  55. Qi G, Wang Y, Estevez L, Switzer AK, Duan X, Yang X et al (2010) Facile and scalable synthesis of monodispersed spherical capsules with a mesoporous shell. Chem Mater 22:2693–2695

    Article  Google Scholar 

  56. Kato N, Ishii T, Koumoto S (2010) Synthesis of monodisperse mesoporous silica hollow microcapsules and their release of loaded materials. Langmuir 26:14334–14344

    Article  Google Scholar 

  57. Zhao WR, Lang MD, Li YS, Li L, Shi JL (2009) Fabrication of uniform hollow mesoporous silica spheres and ellipsoids of tunable size through a facile hard-templating route. J Mater Chem 19:2778–2783

    Article  Google Scholar 

  58. Li YS, Shi JL, Hua ZL, Chen HR, Ruan ML, Yan DS (2003) Hollow spheres of mesoporous aluminosilicate with a three-dimensional pore network and extraordinarily high hydrothermal stability. Nano Lett 3:609–612

    Article  Google Scholar 

  59. Feng ZG, Li YS, Niu DC, Li L, Zhao WR, Chen HR et al (2008) A facile route to hollow nanospheres of mesoporous silica with tunable size. Chem Commun 23:2629–2631

    Article  Google Scholar 

  60. Djojoputro H, Zhou XF, Qiao SZ, Wang LZ, Yu CZ, Lu GQ (2006) Periodic mesoporous organosilica hollow spheres with tunable wall thickness. J Am Chem Soc 128:6320–6321

    Article  Google Scholar 

  61. Yeh YQ, Chen BC, Lin HP, Tang CY (2006) Synthesis of hollow silica spheres with mesostructured shell using cationic-anionic-neutral block copolymer ternary surfactants. Langmuir 22:6–9

    Article  Google Scholar 

  62. Wang JW, Xia YD, Wang WX, Poliakoff M, Mokaya R (2006) Synthesis of mesoporous silica hollow spheres in supercritical CO2/water systems. J Mater Chem 16:1751–1756

    Article  Google Scholar 

  63. Chen Y, Chen HR, Shi JL (2014) Construction of homogenous/heterogeneous hollow mesoporous silica nanostructures by silica-etching chemistry: principles, synthesis, and applications. Acc Chem Res 47:125–137

    Article  Google Scholar 

  64. Chen Y, Chu C, Zhou YC, Ru YF, Chen HR, Chen F et al (2011) Reversible pore-structure evolution in hollow silica nanocapsules: large pores for siRNA delivery and nanoparticle collecting. Small 7:2935–2944

    Article  Google Scholar 

  65. Chen Y, Xu PF, Chen HR, Li YS, Bu WB, Shu Z et al (2013) Colloidal HPMO nanoparticles: silica-etching chemistry tailoring, topological transformation, and nano-biomedical applications. Adv Mater 25:3100–3105

    Article  Google Scholar 

  66. Chen Y, Gao Y, Chen HR, Zeng DP, Li YP, Zheng YY et al (2012) Engineering inorganic nanoemulsions/nanoliposomes by fluoride-silica chemistry for efficient delivery/co-delivery of hydrophobic agents. Adv Funct Mater 22:1586–1597

    Article  Google Scholar 

  67. Chen D, Li LL, Tang FQ, Qi SO (2009) Facile and scalable synthesis of tailored silica “nanorattle” structures. Adv Mater 21:3804–3807

    Article  Google Scholar 

  68. Chen Y, Chen HR, Zhang SJ, Chen F, Sun SK, He QJ et al (2012) Structure–property relationships in manganese oxide – mesoporous silica nanoparticles used for T-1-weighted MRI and simultaneous anti-cancer drug delivery. Biomaterials 33:2388–2398

    Article  Google Scholar 

  69. Chen Y, Yin Q, Ji XF, Zhang SJ, Chen HR, Zheng YY et al (2012) Manganese oxide-based multifunctionalized mesoporous silica nanoparticles for pH-responsive MRI, ultrasonography and circumvention of MDR in cancer cells. Biomaterials 33:7126–7137

    Article  Google Scholar 

  70. Liu HY, Chen D, Li LL, Liu TL, Tan LF, Wu XL et al (2011) Multifunctional gold nanoshells on silica nanorattles: a platform for the combination of photothermal therapy and chemotherapy with low systemic toxicity. Angew Chem Int Ed 123:921–925

    Google Scholar 

  71. Lee JE, Lee N, Kim H, Kim J, Choi SH, Kim JH et al (2010) Uniform mesoporous dye-doped silica nanoparticles decorated with multiple magnetite nanocrystals for simultaneous enhanced magnetic resonance imaging, fluorescence imaging, and drug delivery. J Am Chem Soc 132:552–557

    Article  Google Scholar 

  72. Giersig M, Ung T, LizMarzan LM, Mulvaney P (1997) Direct observation of chemical reactions in silica-coated gold and silver nanoparticles. Adv Mater 9:570–575

    Article  Google Scholar 

  73. Lee J, Park JC, Song H (2008) A nanoreactor framework of a Au@SiO2 yolk/shell structure for catalytic reduction of p-nitrophenol. Adv Mater 20:1523–1528

    Article  Google Scholar 

  74. Wu M, Meng Q, Chen Y, Xu P, Zhang S, Li Y et al (2014) Ultrasmall confined iron oxide nanoparticle MSNs as a pH-responsive theranostic platform. Adv Funct Mater 24:4273–4283

    Article  Google Scholar 

  75. Liu Z, Che R, Elzatahry AA, Zhao D (2014) Direct imaging Au nanoparticle migration inside mesoporous silica channels. ACS Nano 8(10):10455–10460

    Article  Google Scholar 

  76. Taylor KML, Kim JS, Rieter WJ, An H, Lin WL, Lin WB (2008) Mesoporous silica nanospheres as highly efficient MRI contrast agents. J Am Chem Soc 130:2154–2155

    Article  Google Scholar 

  77. Li SA, Liu HA, Li L, Luo NQ, Cao RH, Chen DH et al (2011) Mesoporous silica nanoparticles encapsulating Gd2O3 as a highly efficient magnetic resonance imaging contrast agent. Appl Phys Lett 98

    Google Scholar 

  78. Huang CC, Tsai CY, Sheu HS, Chuang KY, Su CH, Jeng US et al (2011) Enhancing transversal relaxation for magnetite nanoparticles in MR imaging using Gd3 + −chelated mesoporous silica shells. ACS Nano 5:3905–3916

    Article  Google Scholar 

  79. Shao YZ, Tian XM, Hu WY, Zhang YY, Liu H, He HQ et al (2012) The properties of Gd2O3-assembled silica nanocomposite targeted nanoprobes and their application in MRI. Biomaterials 33:6438–6446

    Article  Google Scholar 

  80. Huang XL, Zhang F, Lee S, Swierczewska M, Kiesewetter DO, Lang LX et al (2012) Long-term multimodal imaging of tumor draining sentinel lymph nodes using mesoporous silica-based nanoprobes. Biomaterials 33:4370–4378

    Article  Google Scholar 

  81. Liu HM, Wu SH, Lu CW, Yao M, Hsiao JK, Hung Y et al (2008) Mesoporous silica nanoparticles improve magnetic labeling efficiency in human stem cells. Small 4:619–626

    Article  Google Scholar 

  82. Kim T, Momin E, Choi J, Yuan K, Zaidi H, Kim J et al (2011) Mesoporous silica-coated hollow manganese oxide nanoparticles as positive T(1) contrast agents for labeling and MRI tracking of adipose-derived mesenchyrnal stem cells. J Am Chem Soc 133:2955–2961. doi:10.1021/ja1084095

    Google Scholar 

  83. Peng YK, Lai CW, Liu CL, Chen HC, Hsiao YH, Liu WL et al (2011) A New and facile method to prepare uniform hollow MnO/functionalized mSiO(2) core/shell nanocomposites. ACS Nano 5:4177–4187

    Article  Google Scholar 

  84. Zhao WR, Gu JL, Zhang LX, Chen HR, Shi JL (2005) Fabrication of uniform magnetic nanocomposite spheres with a magnetic core/mesoporous silica shell structure. J Am Chem Soc 127:8916–8917

    Article  Google Scholar 

  85. Zhao WR, Chen HR, Li YS, Li L, Lang MD, Shi JL (2008) Uniform rattle-type hollow magnetic mesoporous spheres as drug delivery carriers and their sustained-release property. Adv Funct Mater 18:2780–2788

    Article  Google Scholar 

  86. Chen Y, Chen HR, Zhang SJ, Chen F, Zhang LX, Zhang JM et al (2011) Multifunctional mesoporous nanoellipsoids for biological bimodal imaging and magnetically targeted delivery of anticancer drugs. Adv Funct Mater 21:270–278

    Article  Google Scholar 

  87. Kim J, Kim HS, Lee N, Kim T, Kim H, Yu T et al (2008) Multifunctional uniform nanoparticles composed of a magnetite nanocrystal core and a mesoporous silica shell for magnetic resonance and fluorescence imaging and for drug delivery. Angew Chem Int Ed 47:8438–8441

    Article  Google Scholar 

  88. Wu HX, Zhang SJ, Zhang JM, Liu G, Shi JL, Zhang LX et al (2011) A hollow-core, magnetic, and mesoporous double-shell nanostructure: in situ decomposition/reduction synthesis, bioimaging, and drug-delivery properties. Adv Funct Mater 21:1850–1862

    Article  Google Scholar 

  89. Xing ZW, Wang JR, Ke HT, Zhao B, Yue XL, Dai ZF et al (2010) The fabrication of novel nanobubble ultrasound contrast agent for potential tumor imaging. Nanotechnology 21

    Google Scholar 

  90. Yang P, Zhao F, Ding J, Guo J, Shi W, Wang C et al (2014) Bubble-in-bubble strategy for high-quality ultrasound imaging with a structure coupling effect. Chem Mater 26:2121–2127

    Article  Google Scholar 

  91. Zhang K, Chen HR, Guo XS, Zhang D, Zheng YY, Zheng HR et al (2015) Double-scattering/reflection in a single nanoparticle for intensified ultrasound imaging. Sci Rep UK 5

    Google Scholar 

  92. Wang X, Chen HR, Chen Y, Ma M, Zhang K, Li FQ et al (2012) Perfluorohexane-encapsulated mesoporous silica nanocapsules as enhancement agents for highly efficient High Intensity Focused Ultrasound (HIFU). Adv Mater 24:785–791

    Article  Google Scholar 

  93. Niu DC, Wang X, Li YS, Zheng YY, Li FQ, Chen HR et al (2013) Facile synthesis of magnetite/perfluorocarbon co-loaded organic/inorganic hybrid vesicles for dual-modality ultrasound/magnetic resonance imaging and imaging-guided high-intensity focused ultrasound ablation. Adv Mater 25:2686–2692

    Article  Google Scholar 

  94. Zhou Y, Wang Z, Chen Y, Shen H, Luo Z, Li A et al (2013) Microbubbles from gas-generating perfluorohexane nanoemulsions for targeted temperature-sensitive ultrasonography and synergistic HIFU ablation of tumors. Adv Mater 25:4123–4130

    Article  Google Scholar 

  95. Zhang K, Chen H, Li F, Wang Q, Zheng S, Xu H et al (2014) A continuous tri-phase transition effect for HIFU-mediated intravenous drug delivery. Biomaterials 35:5875–5885

    Article  Google Scholar 

  96. Wang X, Chen H, Zhang K, Ma M, Li F, Zeng D et al (2014) An intelligent nanotheranostic agent for targeting, redox-responsive ultrasound imaging, and imaging guided high- intensity focused ultrasound synergistic therapy. Small 10:1403–1411

    Article  Google Scholar 

  97. Yang F, Hu SL, Zhang Y, Cai XW, Huang Y, Wang F et al (2012) A hydrogen peroxide-responsive O2 nanogenerator for ultrasound and magnetic-resonance dual modality imaging. Adv Mater 24:5205–5211

    Article  Google Scholar 

  98. Al-Bataineh O, Jenne J, Huber P (2012) Clinical and future applications of high intensity focused ultrasound in cancer. Cancer Treat Rev 38:346–353

    Article  Google Scholar 

  99. Kennedy JE (2005) High-intensity focused ultrasound in the treatment of solid tumours. Nat Rev Cancer 5:321–327

    Article  Google Scholar 

  100. Dubinsky TJ, Cuevas C, Dighe MK, Kolokythas O, Hwang JH (2008) High-intensity focused ultrasound: current potential and oncologic applications. Am J Roentgenol 190:191–199

    Article  Google Scholar 

  101. Hill CR, terHaar GR (1995) Review article: high intensity focused ultrasound-potential for cancer treatment. Br J Radiol 68:1296–1303

    Article  Google Scholar 

  102. Chen Y, Chen H, Shi J (2014) Nanobiotechnology promotes noninvasive high-intensity focused ultrasound cancer surgery. Adv Healthcare Mater 4:158–165

    Google Scholar 

  103. Sun Y, Zheng YY, Ran HT, Zhou Y, Shen HX, Chen Y et al (2012) Superparamagnetic PLGA-iron oxide microcapsules for dual-modality US/MR imaging and high intensity focused US breast cancer ablation. Biomaterials 33:5854–5864

    Article  Google Scholar 

  104. Napoli A, Anzidei M, Ciolina F, Marotta E, Marincola BC, Brachetti G et al (2013) MR-guided high-intensity focused ultrasound: current status of an emerging technology. Cardiovasc Intervent Radiol 36:1190–1203

    Article  Google Scholar 

  105. Chen Y, Chen HR, Sun Y, Zheng YY, Zeng DP, Li FQ et al (2011) Multifunctional mesoporous composite nanocapsules for highly efficient MRI-guided high-intensity focused ultrasound cancer surgery. Angew Chem Int Ed 50:12505–12509

    Article  Google Scholar 

  106. Ma M, Xu H, Chen H, Jia X, Zhang K, Wang Q et al (2014) A drug–perfluorocarbon nanoemulsion with an ultrathin silica coating for the synergistic effect of chemotherapy and ablation by high-intensity focused ultrasound. Adv Mater 26:7378–7385

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hangrong Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Chen, Y., Ma, M., Chen, H., Shi, J. (2016). Multifunctional Hollow Mesoporous Silica Nanoparticles for MR/US Imaging-Guided Tumor Therapy. In: Dai, Z. (eds) Advances in Nanotheranostics II. Springer Series in Biomaterials Science and Engineering, vol 7. Springer, Singapore. https://doi.org/10.1007/978-981-10-0063-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-0063-8_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-0061-4

  • Online ISBN: 978-981-10-0063-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics