Abstract
The ensemble method is effective at reducing model uncertainties. In this work, a novel ensemble technology has been developed and employed to the coupling process in the climate system model, forming a flexible multi-model ensemble coupling platform. This platform can perform the couple of the ensemble of multiple atmospheric models or multiple realizations of one atmospheric model with the ocean model, land model, and sea-ice model in a single experiment, which enables the quantification study on the role of atmospheric noise and model uncertainty in coupled model. Multiple initial condition ensemble simulations show that stochastic noise generated by atmospheric dynamics is reduced and can be used to estimate the impact of atmospheric perturbations on the ocean and to identify the impact of atmospheric noise in complex sea–air coupling process; better reproduction of the relationship between ENSO and mid–high-latitude SST in the North Pacific can be achieved compared to the original standard coupled model. To perform IE coupling simulation efficiently and effectively, we further propose a model-based process layout scheme for coupled climate simulation, as well as present a portal for our multi-model ensemble platform.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Alexeev, Y., Mahajan, A., Leyffer, S., Fletcher, G., Fedorov, D.G.: Heuristic static load-balancing algorithm applied to the fragment molecular orbital method. In: Proceeding of the 2012 International Conference on High Performance Computing, Networking, Storage and Analysis (SC). IEEE Computer Society Press, Los Alamitos, CA, USA (2012)
Barkstrom, B., Harrison, E., Smith, G., Green, R., Kibler, J., Cess, R.: Earth radiation budget experiment (ERBE) archival and April 1985 results. Bull. Am. Meteorol. Soc. 70(10), 1254–1262 (1989). doi:http://dx.doi.org/10.1175/1520-0477(1989)070%3C1254:ERBEAA%3E2.0.CO;2
Briegleb, B.P., Bitz, C.M., Hunke, E.C., Lipscomb, W.H., Holland, M.M., Schramm, J.L., Moritz, R.E.: Scientific description of the sea ice component in the community climate system model, version three. NCAR Tech. Note NCAR/TN-463+STR (2004)
Cavalieri, D.J., Parkinson, C.L.: Antarctic sea ice variability and trends, 1979–2006. J. Geophys. Res. 113, C07004 (2008). doi:10.1029/2007JC004564
Craig, A.P., Jacob, R.L., Kauffman, B., Bettge, T., Larson, J.W., Ong, E., Chris, H., Ding, Q., He, Y.: CPL6: the new extensible, high performance parallel coupler for the community climate system model. Int. J. High Perform. Comput. Appl. 19(3), 309–327 (2005)
Czaja, A., Frankignoul, C.: Observed impact of Atlantic SST anomalies on the North Atlantic oscillation. J. Clim. 15, 606–623 (2002)
Dennis, J.M., Vertenstein, M., Worley, P.H., Mirin, A.A., Craig, A.P., Jacob, R.L., Mickelson, S.A.: Computational performance of ultra-high-resolution capability in the Community Earth System Model. Int. J. High Perform. Comput. Appl. 26, 5–16 (2012)
Dickinson, R.E., Oleson, K.W., Bonan, G., Hoffman, F., Thornton, P., Vertenstein, M., Yang, Z.L., Zeng, X.B.: The community land model and its climate statistics as a component of the community climate system model. J. Climate 19, 2302–2324 (2006). doi:10.1175/JCLI3742.1
Hong, S.Y., Koo, M.S., Jang, J., Esther Kim, J.E., Park, H., Joh, M.S., Kang, J.H., Oh, T.J.: An evaluation of the software system dependency of a global atmospheric model. Mon. Wea. Rev. 141(11), 4165–4172 (2013)
Hurrell, J.W.: Decadal trends in the North Atlantic oscillation: regional temperatures and precipitation. Science 269, 676–679 (1995)
Intergovernmental Panel on Climate Change (IPCC): Climate change 2007: The scientific basis. In: Solomon, S. et al. (eds.) Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, New York (2007)
Kerbyson, D.J., Jones, P.W.: A performance model of the parallel ocean program. Int. J. High Perform. Comput. Appl. 19, 261–276 (2005)
Kim, D., Larson, J.W., Chiu, K.: Automatic performance prediction for load-balancing coupled models. In: Proceeding of the 13th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid). IEEE, Delft, pp. 410–417 (2013)
Kirtman, B.P., Shukla, J.: Interactive coupled ensemble: a new coupling strategy for CGCMs. Geophys. Res. Lett. 29(10), 5-1–5-4 (2002). doi:10.1029/2002GL014834
Kirtman, B.P., Schneider, E.K., Straus, D.M., Min, D., Burgman, R.: How weather impacts the forced climate response. Climate Dyn. 37, 2389–2416 (2011)
Knutti, R.: Should we believe model predictions of future climate change? Philos. Trans. Royal Soc. A: Math. Phys. Eng. Sci. 366(1885), 4647–4664 (2008)
Kushnir, Y., Robinson, W.A., Bladé, I., Hall, N.M.J., Peng, S., Sutton, R.: Atmospheric GCM response to extratropical SST anomalies: synthesis and evaluation. J. Clim. 15, 2233–2256 (2002)
Lau, N.C.: Interactions between global SST anomalies and the midlatitude atmospheric circulation. Bull. Amer. Meteorol. Soc. 78, 21–33 (1997)
Li, Z.-X.: Ensemble atmospheric GCM simulation of climate interannual variability from 1979 to 1994. J. Clim. 12, 986–1001 (1999)
Li, L.J., Wang, B., Wang, Y.Q., Wan, H.: Improvements in climate simulation with modifications to the Tiedtke convective parameterization in the grid-point atmospheric model of IAP LASG (GAMIL). Adv. Atmos. Sci. 24, 323–335 (2007)
Li, B., Zhou, T.J., Lin, P.F., Bao, Q.: The wintertime North Pacific surface heat flux anomaly and air-sea interaction as simulated by the LASG/IAP ocean-atmosphere couple model FGOALS_s1.0. Acta Meteor. Sinica 69, 52–63 (2011). (in Chinese)
Li, L.J., et al.: The flexible global ocean-atmosphere-land system model, Grid-point version 2: FGOALS-g2. Adv. Atmos. Sci. 30, 543–560 (2013a)
Li, L.J., et al.: Evaluation of grid-point atmospheric model of IAP LASG, version 2.0 (GAMIL 2.0). Adv. Atmos. Sci. 30, 855–867 (2013b)
Liang, X.Y. Liu, and G. X. Wu, 2006: Roles of tropical and subtropical land-sea distribution and the Qinghai-Xizang Plateau in the formation of the Asian summer monsoon. Chin. J. Geophys. 49(4), 983–992 (in Chinese)
Lin, P., Liu, H., Yu, Y., Zhou, T.: Long-term behaviors of two versions of FGOALS2 in preindustrial control simulations with implications for 20th century simulations. Adv. Atmos. Sci. 30(3), 577–592 (2013). doi:10.1007/s00376-013-2186-0
Liu, H., Zhang, M., Lin, W.: An investigation of the initial development of the double-ITCZ warm SST biases in the CCSM. J. Climate 25(1), 140–155 (2011). doi:10.1175/2011JCLI4001.1
Nan, D., Wei, X., Xu, J., et al.: CESMTuner: An Auto-tuning Framework for the Community Earth System Model[C]. In: High Performance Computing and Communications, 2014 IEEE 6th Intl Symp on Cyberspace Safety and Security, 2014 IEEE 11th Intl Conf on Embedded Software and Syst (HPCC, CSS, ICESS), 2014 IEEE Intl Conf on. IEEE, pp. 282–289 (2014)
Parkinson, C.L., Cavalieri, D.J.: Arctic sea ice variability and trends, 1979–2006. J. Geophys. Res. 113, C07003 (2008). doi:10.1029/2007JC004558
Rayner, N.A., Parker, D.E., Horton, E.B., Folland, C.K., Alexander, L.V., Rowell, D.P., Kent, E.C., Kaplan, A.: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res. 108, D14 (2003). doi:10.1029/2002JD002670
Robinson, W.A.: Does eddy feedback sustain variability in the zonal index? J. Atmos. Sci. 53, 3556–3569 (1996)
Rodwell, M.J., Rowell, D.P., Folland, C.K.: Oceanic forcing of the wintertime North Atlantic Oscillation and European climate. Nature 398, 320–323 (1999)
Rosinski, J.M., Williamson, D.L.: The accumulation of rounding errors and port validation for global atmospheric models. SIAM J. Sci. Comput. 18(2), 552–564 (1997)
Senoner, J.M., García, M., Mendez, S., Staffelbach, G., Vermorel, O., Poinsot, T.: Growth of rounding errors and repetitivity of large eddy simulations. AIAA J. 46(7), 1773–1781 (2008)
Shukla, J.: Predictability in the midst of chaos: a scientific basis for climate forecasting. Science 282, 728–731 (1998)
Smith, R.D., Gent, P.R.: Reference manual for the parallel ocean program (POP), ocean component of the community climate system model (CCSM2.0 and 3.0). Technical Report LA-UR-02-2484, Los Alamos National Laboratory, Los Alamos, NM, http://www.ccsm.ucar.edu/models/ccsm3.0/pop (2002)
Song, Z., Qiao, F., Lei, X., Wang, C.: Influence of parallel computational uncertainty on simulations of the coupled general climate model. Geosci. Model. Dev. 5(2), 313–319 (2012)
Stainforth, D.A., Allen, M.R., Tredger, E.R., Smith, L.A.: Confidence, uncertainty and decision-support relevance in climate predictions. Philos. Trans. Roy. Soc. 365(1857), 2145–2161 (2007)
Thomas, S.J., Hacker, J.P., Desgagné, M., Stull, R.B.: An ensemble analysis of forecast errors related to floating point performance. Wea. Forecast. 17(4), 898–906 (2002)
Wang, W., Anderson, B.T., Kaufmann, R.K., Myeni, R.B.: The relation between the North Atlantic Oscillation and SSTs in the North Atlantic basin. J. Clim. 17, 4752–4759 (2004)
Washington, W. M.: Scientific grand challenges: challenges in climate change science and the role of computing at the extreme scale [OL]. http://www.science.doe.gov/ascr/ProgramDocuments/Docs/ClimateReport.pdf (2013)
Wittenberg, A.T.: Are historical records sufficient to constrain ENSO simulations? Geophys. Res. Lett. 36, L12702 (2009). doi:10.1029/2009GL038710
Worley, P.H., Mirin, A.A., Craig, A.P., Taylor, M.A., Dennis, J.M., Vertenstein, M.: Performance of the community earth system model. In: 2011 International Conference for High Performance Computing, Networking, Storage and Analysis (SC). Seattle, WA, USA, IEEE, new York (2011)
Wu, R.G., Kirtman, B.P.: The tropospheric biennial oscillation of the monsoon–ENSO system in an interactive ensemble coupled GCM. J. Clim. 17, 1623–1640 (2004)
Wu, Z.H., Schneider, E.K., Kirtman, B.P.: Causes of low frequency North Atlantic SST variability in a coupled GCM. Geophys. Res. Lett. 31, L09210 (2004). doi:10.1029/2004GL019548
Wu, T.W., Yu, R.C., Zhang, F.: A modified dynamic framework for the atmospheric spectral model and its application. J. Atmos. Sci. 65, 2235–2253 (2008)
Xin, X.G., Wu, T.W., Wang, Z.Z.: Numerical simulation of climate change in 21 century under two different mitigation scenarios. Acta Meteor. Sinica 67, 935–946 (2009). (in Chinese)
Xin, X.G., Xue, W., Zhang, M.H., Li, H.M., Zhang, T., Zhang, J.: Simulation of SST the variability in the North Pacific Ocean and ENSO by an interactive ensemble coupled model. Chin. J. Geophys. 57(4), 1021–1031 (2014a)
Xin, X.G., Xue, W., Zhang, M.H., Li, H.M., Zhang, T., Zhang, J.: How much of the NAO monthly variability is from Ocean-Atmospheric coupling: results from an interactive ensemble climate model. Clim. Dyn. (2014b). doi:10.1007/s00382-014-2246-x
Yeh, S.-W., Kirtman, B.P.: The impact of internal atmospheric variability on the North Pacific SST variability. Climate Dyn. 22, 721–732 (2004)
Yeh, S.-W., Kirtman, B.P.: The characteristics of signal versus noise SST variability in the North Pacific and the Tropical Pacific Ocean. Ocean Science Journal 41, 1–10 (2006)
Yeh, S.-W., Kirtman, B.P., An, S.I.: Local versus non-local atmospheric weather noise and the North Pacific SST variability. Geophys. Res. Lett. 34, L14706 (2007). doi:10.1029/2007GL030206
Zhang, X.H., Yu, Y.Q., Liu, H.: Wintertime North Pacific heat flux anomaly and air-sea interaction in a coupled ocean-atmosphere model. Chin. J. Atmos. Sci. 22, 511–521 (1998). (in Chinese)
Zhang, X., Lin, W., Zhang, M.: Toward understanding the double Intertropical Convergence Zone pathology in coupled ocean-atmosphere general circulation models. J. Geophys. Res. 112(D12), D12102 (2007). doi:10.1029/2006JD007878
Zhang, L., Dong, M., Wu, T.W.: Changes in precipitation extremes over Eastern China simulated by the Beijing Climate Center Climate System Model (BCC_CSM1.0). Climate Res. 50, 227–245 (2011)
Zhang, J., Xue, W., Zhang, M.H., Li, H.M., Zhang, T., Li, L.J., Xin, X.G.: Climate impacts of stochastic atmospheric perturbations on the ocean. Int. J. Climatol. (2014). doi:10.1002/joc.3949
Zhao, Z.C., Luo, Y., Huang, J.B.: A review on evaluation methods of climate modeling. Adv. Climate. Change. Res. 4, 137–144 (2013). (in Chinese)
Zhou, T.J., Yu, R.C.: Sea-surface temperature induced variability of the Southern Annular Mode in an atmospheric general circulation model. Geophys. Res. Lett. 31, L24206 (2004). doi: 10.1029/2004GL021473
Zhou, T.J., Yu, R.C., Li, Z.X.: ENSO-dependent and ENSO-independent variability over the Mid-latitude North Pacific: observation and Air-sea coupled model simulation. Adv. Atmos. Sci. 19, 1127–1147 (2002)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
Copyright information
© 2016 Springer Science+Business Media Singapore
About this chapter
Cite this chapter
Xue, W. et al. (2016). Development and Testing of a Multi-model Ensemble Coupling Framework. In: Development and Evaluation of High Resolution Climate System Models. Springer, Singapore. https://doi.org/10.1007/978-981-10-0033-1_4
Download citation
DOI: https://doi.org/10.1007/978-981-10-0033-1_4
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-10-0031-7
Online ISBN: 978-981-10-0033-1
eBook Packages: Earth and Environmental ScienceEarth and Environmental Science (R0)