Skip to main content

Development and Testing of a Multi-model Ensemble Coupling Framework

  • 552 Accesses

Abstract

The ensemble method is effective at reducing model uncertainties. In this work, a novel ensemble technology has been developed and employed to the coupling process in the climate system model, forming a flexible multi-model ensemble coupling platform. This platform can perform the couple of the ensemble of multiple atmospheric models or multiple realizations of one atmospheric model with the ocean model, land model, and sea-ice model in a single experiment, which enables the quantification study on the role of atmospheric noise and model uncertainty in coupled model. Multiple initial condition ensemble simulations show that stochastic noise generated by atmospheric dynamics is reduced and can be used to estimate the impact of atmospheric perturbations on the ocean and to identify the impact of atmospheric noise in complex sea–air coupling process; better reproduction of the relationship between ENSO and mid–high-latitude SST in the North Pacific can be achieved compared to the original standard coupled model. To perform IE coupling simulation efficiently and effectively, we further propose a model-based process layout scheme for coupled climate simulation, as well as present a portal for our multi-model ensemble platform.

Keywords

  • Climate system model
  • Ensemble coupling platform
  • Atmospheric noise
  • Process layout

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-981-10-0033-1_4
  • Chapter length: 46 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   119.00
Price excludes VAT (USA)
  • ISBN: 978-981-10-0033-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   159.99
Price excludes VAT (USA)
Hardcover Book
USD   159.99
Price excludes VAT (USA)
Fig. 4.1
Fig. 4.2
Fig. 4.3
Fig. 4.4
Fig. 4.5
Fig. 4.6
Fig. 4.7
Fig. 4.8
Fig. 4.9
Fig. 4.10
Fig. 4.11
Fig. 4.12
Fig. 4.13
Fig. 4.14
Fig. 4.15
Fig. 4.16
Fig. 4.17
Fig. 4.18
Fig. 4.19
Fig. 4.20
Fig. 4.21
Fig. 4.22
Fig. 4.23
Fig. 4.24
Fig. 4.25
Fig. 4.26
Fig. 4.27
Fig. 4.28
Fig. 4.29
Fig. 4.30
Fig. 4.31
Fig. 4.32
Fig. 4.33

References

  • Alexeev, Y., Mahajan, A., Leyffer, S., Fletcher, G., Fedorov, D.G.: Heuristic static load-balancing algorithm applied to the fragment molecular orbital method. In: Proceeding of the 2012 International Conference on High Performance Computing, Networking, Storage and Analysis (SC). IEEE Computer Society Press, Los Alamitos, CA, USA (2012)

    Google Scholar 

  • Barkstrom, B., Harrison, E., Smith, G., Green, R., Kibler, J., Cess, R.: Earth radiation budget experiment (ERBE) archival and April 1985 results. Bull. Am. Meteorol. Soc. 70(10), 1254–1262 (1989). doi:http://dx.doi.org/10.1175/1520-0477(1989)070%3C1254:ERBEAA%3E2.0.CO;2

    Google Scholar 

  • Briegleb, B.P., Bitz, C.M., Hunke, E.C., Lipscomb, W.H., Holland, M.M., Schramm, J.L., Moritz, R.E.: Scientific description of the sea ice component in the community climate system model, version three. NCAR Tech. Note NCAR/TN-463+STR (2004)

    Google Scholar 

  • Cavalieri, D.J., Parkinson, C.L.: Antarctic sea ice variability and trends, 1979–2006. J. Geophys. Res. 113, C07004 (2008). doi:10.1029/2007JC004564

    Google Scholar 

  • Craig, A.P., Jacob, R.L., Kauffman, B., Bettge, T., Larson, J.W., Ong, E., Chris, H., Ding, Q., He, Y.: CPL6: the new extensible, high performance parallel coupler for the community climate system model. Int. J. High Perform. Comput. Appl. 19(3), 309–327 (2005)

    CrossRef  Google Scholar 

  • Czaja, A., Frankignoul, C.: Observed impact of Atlantic SST anomalies on the North Atlantic oscillation. J. Clim. 15, 606–623 (2002)

    CrossRef  Google Scholar 

  • Dennis, J.M., Vertenstein, M., Worley, P.H., Mirin, A.A., Craig, A.P., Jacob, R.L., Mickelson, S.A.: Computational performance of ultra-high-resolution capability in the Community Earth System Model. Int. J. High Perform. Comput. Appl. 26, 5–16 (2012)

    CrossRef  Google Scholar 

  • Dickinson, R.E., Oleson, K.W., Bonan, G., Hoffman, F., Thornton, P., Vertenstein, M., Yang, Z.L., Zeng, X.B.: The community land model and its climate statistics as a component of the community climate system model. J. Climate 19, 2302–2324 (2006). doi:10.1175/JCLI3742.1

    CrossRef  Google Scholar 

  • Hong, S.Y., Koo, M.S., Jang, J., Esther Kim, J.E., Park, H., Joh, M.S., Kang, J.H., Oh, T.J.: An evaluation of the software system dependency of a global atmospheric model. Mon. Wea. Rev. 141(11), 4165–4172 (2013)

    CrossRef  Google Scholar 

  • Hurrell, J.W.: Decadal trends in the North Atlantic oscillation: regional temperatures and precipitation. Science 269, 676–679 (1995)

    CrossRef  Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC): Climate change 2007: The scientific basis. In: Solomon, S. et al. (eds.) Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, New York (2007)

    Google Scholar 

  • Kerbyson, D.J., Jones, P.W.: A performance model of the parallel ocean program. Int. J. High Perform. Comput. Appl. 19, 261–276 (2005)

    CrossRef  Google Scholar 

  • Kim, D., Larson, J.W., Chiu, K.: Automatic performance prediction for load-balancing coupled models. In: Proceeding of the 13th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid). IEEE, Delft, pp. 410–417 (2013)

    Google Scholar 

  • Kirtman, B.P., Shukla, J.: Interactive coupled ensemble: a new coupling strategy for CGCMs. Geophys. Res. Lett. 29(10), 5-1–5-4 (2002). doi:10.1029/2002GL014834

    Google Scholar 

  • Kirtman, B.P., Schneider, E.K., Straus, D.M., Min, D., Burgman, R.: How weather impacts the forced climate response. Climate Dyn. 37, 2389–2416 (2011)

    CrossRef  Google Scholar 

  • Knutti, R.: Should we believe model predictions of future climate change? Philos. Trans. Royal Soc. A: Math. Phys. Eng. Sci. 366(1885), 4647–4664 (2008)

    CrossRef  Google Scholar 

  • Kushnir, Y., Robinson, W.A., Bladé, I., Hall, N.M.J., Peng, S., Sutton, R.: Atmospheric GCM response to extratropical SST anomalies: synthesis and evaluation. J. Clim. 15, 2233–2256 (2002)

    CrossRef  Google Scholar 

  • Lau, N.C.: Interactions between global SST anomalies and the midlatitude atmospheric circulation. Bull. Amer. Meteorol. Soc. 78, 21–33 (1997)

    CrossRef  Google Scholar 

  • Li, Z.-X.: Ensemble atmospheric GCM simulation of climate interannual variability from 1979 to 1994. J. Clim. 12, 986–1001 (1999)

    Google Scholar 

  • Li, L.J., Wang, B., Wang, Y.Q., Wan, H.: Improvements in climate simulation with modifications to the Tiedtke convective parameterization in the grid-point atmospheric model of IAP LASG (GAMIL). Adv. Atmos. Sci. 24, 323–335 (2007)

    CrossRef  Google Scholar 

  • Li, B., Zhou, T.J., Lin, P.F., Bao, Q.: The wintertime North Pacific surface heat flux anomaly and air-sea interaction as simulated by the LASG/IAP ocean-atmosphere couple model FGOALS_s1.0. Acta Meteor. Sinica 69, 52–63 (2011). (in Chinese)

    Google Scholar 

  • Li, L.J., et al.: The flexible global ocean-atmosphere-land system model, Grid-point version 2: FGOALS-g2. Adv. Atmos. Sci. 30, 543–560 (2013a)

    Google Scholar 

  • Li, L.J., et al.: Evaluation of grid-point atmospheric model of IAP LASG, version 2.0 (GAMIL 2.0). Adv. Atmos. Sci. 30, 855–867 (2013b)

    Google Scholar 

  • Liang, X.Y. Liu, and G. X. Wu, 2006: Roles of tropical and subtropical land-sea distribution and the Qinghai-Xizang Plateau in the formation of the Asian summer monsoon. Chin. J. Geophys. 49(4), 983–992 (in Chinese)

    Google Scholar 

  • Lin, P., Liu, H., Yu, Y., Zhou, T.: Long-term behaviors of two versions of FGOALS2 in preindustrial control simulations with implications for 20th century simulations. Adv. Atmos. Sci. 30(3), 577–592 (2013). doi:10.1007/s00376-013-2186-0

    CrossRef  Google Scholar 

  • Liu, H., Zhang, M., Lin, W.: An investigation of the initial development of the double-ITCZ warm SST biases in the CCSM. J. Climate 25(1), 140–155 (2011). doi:10.1175/2011JCLI4001.1

    CrossRef  Google Scholar 

  • Nan, D., Wei, X., Xu, J., et al.: CESMTuner: An Auto-tuning Framework for the Community Earth System Model[C]. In: High Performance Computing and Communications, 2014 IEEE 6th Intl Symp on Cyberspace Safety and Security, 2014 IEEE 11th Intl Conf on Embedded Software and Syst (HPCC, CSS, ICESS), 2014 IEEE Intl Conf on. IEEE, pp. 282–289 (2014)

    Google Scholar 

  • Parkinson, C.L., Cavalieri, D.J.: Arctic sea ice variability and trends, 1979–2006. J. Geophys. Res. 113, C07003 (2008). doi:10.1029/2007JC004558

    Google Scholar 

  • Rayner, N.A., Parker, D.E., Horton, E.B., Folland, C.K., Alexander, L.V., Rowell, D.P., Kent, E.C., Kaplan, A.: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res. 108, D14 (2003). doi:10.1029/2002JD002670

    Google Scholar 

  • Robinson, W.A.: Does eddy feedback sustain variability in the zonal index? J. Atmos. Sci. 53, 3556–3569 (1996)

    CrossRef  Google Scholar 

  • Rodwell, M.J., Rowell, D.P., Folland, C.K.: Oceanic forcing of the wintertime North Atlantic Oscillation and European climate. Nature 398, 320–323 (1999)

    CrossRef  Google Scholar 

  • Rosinski, J.M., Williamson, D.L.: The accumulation of rounding errors and port validation for global atmospheric models. SIAM J. Sci. Comput. 18(2), 552–564 (1997)

    CrossRef  Google Scholar 

  • Senoner, J.M., García, M., Mendez, S., Staffelbach, G., Vermorel, O., Poinsot, T.: Growth of rounding errors and repetitivity of large eddy simulations. AIAA J. 46(7), 1773–1781 (2008)

    CrossRef  Google Scholar 

  • Shukla, J.: Predictability in the midst of chaos: a scientific basis for climate forecasting. Science 282, 728–731 (1998)

    CrossRef  Google Scholar 

  • Smith, R.D., Gent, P.R.: Reference manual for the parallel ocean program (POP), ocean component of the community climate system model (CCSM2.0 and 3.0). Technical Report LA-UR-02-2484, Los Alamos National Laboratory, Los Alamos, NM, http://www.ccsm.ucar.edu/models/ccsm3.0/pop (2002)

  • Song, Z., Qiao, F., Lei, X., Wang, C.: Influence of parallel computational uncertainty on simulations of the coupled general climate model. Geosci. Model. Dev. 5(2), 313–319 (2012)

    CrossRef  Google Scholar 

  • Stainforth, D.A., Allen, M.R., Tredger, E.R., Smith, L.A.: Confidence, uncertainty and decision-support relevance in climate predictions. Philos. Trans. Roy. Soc. 365(1857), 2145–2161 (2007)

    CrossRef  Google Scholar 

  • Thomas, S.J., Hacker, J.P., Desgagné, M., Stull, R.B.: An ensemble analysis of forecast errors related to floating point performance. Wea. Forecast. 17(4), 898–906 (2002)

    CrossRef  Google Scholar 

  • Wang, W., Anderson, B.T., Kaufmann, R.K., Myeni, R.B.: The relation between the North Atlantic Oscillation and SSTs in the North Atlantic basin. J. Clim. 17, 4752–4759 (2004)

    CrossRef  Google Scholar 

  • Washington, W. M.: Scientific grand challenges: challenges in climate change science and the role of computing at the extreme scale [OL]. http://www.science.doe.gov/ascr/ProgramDocuments/Docs/ClimateReport.pdf (2013)

  • Wittenberg, A.T.: Are historical records sufficient to constrain ENSO simulations? Geophys. Res. Lett. 36, L12702 (2009). doi:10.1029/2009GL038710

    CrossRef  Google Scholar 

  • Worley, P.H., Mirin, A.A., Craig, A.P., Taylor, M.A., Dennis, J.M., Vertenstein, M.: Performance of the community earth system model. In: 2011 International Conference for High Performance Computing, Networking, Storage and Analysis (SC). Seattle, WA, USA, IEEE, new York (2011)

    Google Scholar 

  • Wu, R.G., Kirtman, B.P.: The tropospheric biennial oscillation of the monsoon–ENSO system in an interactive ensemble coupled GCM. J. Clim. 17, 1623–1640 (2004)

    CrossRef  Google Scholar 

  • Wu, Z.H., Schneider, E.K., Kirtman, B.P.: Causes of low frequency North Atlantic SST variability in a coupled GCM. Geophys. Res. Lett. 31, L09210 (2004). doi:10.1029/2004GL019548

    Google Scholar 

  • Wu, T.W., Yu, R.C., Zhang, F.: A modified dynamic framework for the atmospheric spectral model and its application. J. Atmos. Sci. 65, 2235–2253 (2008)

    CrossRef  Google Scholar 

  • Xin, X.G., Wu, T.W., Wang, Z.Z.: Numerical simulation of climate change in 21 century under two different mitigation scenarios. Acta Meteor. Sinica 67, 935–946 (2009). (in Chinese)

    Google Scholar 

  • Xin, X.G., Xue, W., Zhang, M.H., Li, H.M., Zhang, T., Zhang, J.: Simulation of SST the variability in the North Pacific Ocean and ENSO by an interactive ensemble coupled model. Chin. J. Geophys. 57(4), 1021–1031 (2014a)

    Google Scholar 

  • Xin, X.G., Xue, W., Zhang, M.H., Li, H.M., Zhang, T., Zhang, J.: How much of the NAO monthly variability is from Ocean-Atmospheric coupling: results from an interactive ensemble climate model. Clim. Dyn. (2014b). doi:10.1007/s00382-014-2246-x

    Google Scholar 

  • Yeh, S.-W., Kirtman, B.P.: The impact of internal atmospheric variability on the North Pacific SST variability. Climate Dyn. 22, 721–732 (2004)

    CrossRef  Google Scholar 

  • Yeh, S.-W., Kirtman, B.P.: The characteristics of signal versus noise SST variability in the North Pacific and the Tropical Pacific Ocean. Ocean Science Journal 41, 1–10 (2006)

    CrossRef  Google Scholar 

  • Yeh, S.-W., Kirtman, B.P., An, S.I.: Local versus non-local atmospheric weather noise and the North Pacific SST variability. Geophys. Res. Lett. 34, L14706 (2007). doi:10.1029/2007GL030206

    CrossRef  Google Scholar 

  • Zhang, X.H., Yu, Y.Q., Liu, H.: Wintertime North Pacific heat flux anomaly and air-sea interaction in a coupled ocean-atmosphere model. Chin. J. Atmos. Sci. 22, 511–521 (1998). (in Chinese)

    Google Scholar 

  • Zhang, X., Lin, W., Zhang, M.: Toward understanding the double Intertropical Convergence Zone pathology in coupled ocean-atmosphere general circulation models. J. Geophys. Res. 112(D12), D12102 (2007). doi:10.1029/2006JD007878

    CrossRef  Google Scholar 

  • Zhang, L., Dong, M., Wu, T.W.: Changes in precipitation extremes over Eastern China simulated by the Beijing Climate Center Climate System Model (BCC_CSM1.0). Climate Res. 50, 227–245 (2011)

    CrossRef  Google Scholar 

  • Zhang, J., Xue, W., Zhang, M.H., Li, H.M., Zhang, T., Li, L.J., Xin, X.G.: Climate impacts of stochastic atmospheric perturbations on the ocean. Int. J. Climatol. (2014). doi:10.1002/joc.3949

    Google Scholar 

  • Zhao, Z.C., Luo, Y., Huang, J.B.: A review on evaluation methods of climate modeling. Adv. Climate. Change. Res. 4, 137–144 (2013). (in Chinese)

    CrossRef  Google Scholar 

  • Zhou, T.J., Yu, R.C.: Sea-surface temperature induced variability of the Southern Annular Mode in an atmospheric general circulation model. Geophys. Res. Lett. 31, L24206 (2004). doi: 10.1029/2004GL021473

  • Zhou, T.J., Yu, R.C., Li, Z.X.: ENSO-dependent and ENSO-independent variability over the Mid-latitude North Pacific: observation and Air-sea coupled model simulation. Adv. Atmos. Sci. 19, 1127–1147 (2002)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Xue .

Rights and permissions

Reprints and Permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Xue, W. et al. (2016). Development and Testing of a Multi-model Ensemble Coupling Framework. In: Development and Evaluation of High Resolution Climate System Models. Springer, Singapore. https://doi.org/10.1007/978-981-10-0033-1_4

Download citation