Skip to main content

Studies on High-Resolution Atmospheric and Oceanic General Circulation Models

  • Chapter
  • First Online:
Development and Evaluation of High Resolution Climate System Models

Abstract

Atmospheric general circulation models (AGCMs) and oceanic general circulation models (OGCMs) are the most important components of a climate/earth system model. The development of higher resolution AGCMs and OGCMs is one of the most active areas of study in the model development field. At the Institute of Atmospheric Physics (IAP), Chinese Academy of Sciences (CAS), over 30 years have passed since the IAP’s AGCM was first designed in 1982, during which time the model has been continually developed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adler, R.F., et al.: The Version 2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979-Present). J. Hydrometeor. 4, 1147–1167 (2003)

    Google Scholar 

  • Andrews, D.G., Holton, J.R., Leovy, C.B.: Middle Atmosphere Dynamics, 123–133 pp. Academic Press (1987)

    Google Scholar 

  • Arakawa, A., Lamb, V.B.: Computational design of the basic dynamical processes of the UCLA general circulation model. Methods in Computational Physics, vol. 17, pp. 173–265. Academic Press (1977)

    Google Scholar 

  • Bentsen, M., Even, G., Evensen, G., Drange, H., Jenkins, A.D.: Coordinate transformation on a sphere using conformal mapping. Mon. Wea. Rev. 127, 2733–2740 (1999)

    Article  Google Scholar 

  • Bleck, R.: An oceanic general circulation model framed in hybrid isopycnic-Cartesian coordinates. Ocean Model. 4, 55–88 (2002)

    Article  Google Scholar 

  • Boer, G.J., Denis, B.: Numerical convergence of the dynamics of a GCM. Clim Dyn. 13, 359–374 (1997)

    Article  Google Scholar 

  • Boer, G.J., et al.: Some results from an intercomparison of the climates simulated by 14 atmospheric general circulation models. J. Geophys. Res. 97, 12 771–12 786 (1992)

    Google Scholar 

  • Canuto, V.M., Howard, A., Cheng, Y., Dubovikov, M.S.: Ocean turbulence. Part I: one-point closure model. Momentum and heat vertical diffusivities. J. Phys. Oceanogr. 31, 1413–1426 (2001)

    Article  Google Scholar 

  • Canuto, V.M., Howard, A., Cheng, Y., Dubovikov, M.S.: Ocean turbulence. Part II: vertical diffusivities of momentum, heat, salt, mass, and passive scalars. J. Phys. Oceanogr. 32, 240–264 (2002)

    Article  Google Scholar 

  • Chen, H., Xue, F.: Numerical simulation of the decadal variation of East Asian summer monsoon and summer rainfall in eastern China. Chinese J. Atmospheric Sciences, 37(5), 1143–1153 (2013) (in Chinese)

    Google Scholar 

  • Collins, W.D., et al.: Description of the NCAR Community Atmosphere Model (CAM3.0). NCAR Technical Note NCAR/TN-464 + STR, xii + 214 pp (2004)

    Google Scholar 

  • Dee, D.P., et al.: The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc. 137, 553–597 (2011)

    Google Scholar 

  • Ding, Y.H.: The variability of the Asian summer monsoon. J. Meteor. Soc. Japan. 85B, 21–54 (2007)

    Article  Google Scholar 

  • Dong, X., Xue, F., Zhang, H., Zeng, Q.C.: Evaluation of surface air temperature change over China and the globe during the twentieth century in IAP AGCM4.0. Atmos. Oceanic Sci. Lett. 5, 435–438 (2012)

    Article  Google Scholar 

  • Drange, H., Simonsen, K.: Formulation of Air-Sea Fluxes in the ESOP2 Version of MICOM. Technical Report, 125, NERSC (1996)

    Google Scholar 

  • Gadgil, S., Sajani, S.: Monsoon precipitation in the AMIP runs. Clim. Dyn. 14, 659–689 (1998)

    Article  Google Scholar 

  • Halliwell, G.R.: Evaluation of vertical coordinate and vertical mixing algorithms in the HYbrid-Coordinate Ocean Model (HYCOM). Ocean Model. 7, 285–322 (2004)

    Article  Google Scholar 

  • Held, I.M., Suarez, M.J.: A proposal for the intercomparison of the dynamical cores of atmospheric general circulation models. Bull. Amer. Meteor. Soc. 75, 1825–1830 (1994)

    Article  Google Scholar 

  • Hogan, R.J., Illingworth, A.J.: Deriving cloud overlap statistics from radar. Quart. J. Roy. Meteor. Soc. 126, 2903–2909 (2000)

    Article  Google Scholar 

  • IPCC: Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment. In: Stocker, T.F., et al. (eds.) Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, New York (2013). https://www.ipcc.ch/report/ar5/wg1/

  • Jablonowski, C., Williamson, D.L.: Baroclinic wave test case for Dynamical cores of GCMs. Quart. J. Roy. Meteor. Soc. 132, 2943–2976 (2006)

    Article  Google Scholar 

  • Kahn, R.A., Garay, M.J., Nelson, D.L., Yau, K.K., Bull, M.A., Gaitley, B.J., Martonchik, J.V., Levy, R.C.: Satellite-derived aerosol optical depth over dark water from MISR and MODIS: Comparisons with AERONET and implications for climatological studies. J. Geophys. Res. 112, D18205 (2007). doi:10.1029/2006JD008175

    Article  Google Scholar 

  • Kalnay, E., et al.: The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteor. Soc. 77, 437–471 (1996)

    Google Scholar 

  • Kang, I.-S., et al.: Intercomparison of the climatological variations of Asian summer monsoon precipitation simulated by 10 GCMs. Clim. Dyn. 19, 383–395 (2002)

    Google Scholar 

  • Large, W.G., Mc Williams, J.C., Doney, S.C.: Oceanic vertical mixing: a review and a model with a nonlocal boundary layer parameterization. Rev. Geophys. 32, 363–403 (1994)

    Article  Google Scholar 

  • Large, W.G., Danabasoglu, G., Doney, S.C., McWilliams, J.C.: Sensitivity to surface forcing and boundary layer mixing in a global ocean model: annual-mean climatology. J. Phys. Oceanogr. 27, 2418–2447 (1997)

    Article  Google Scholar 

  • Lau, N.C., Ploshay, J.: Simulation of synoptic- and subsynoptic-scale phenomena associated with the East Asian summer monsoon using a high-resolution GCM. Mon. Wea. Rev. 137, 137–160 (2009)

    Article  Google Scholar 

  • Liang, X.Z.: Description of a nine-level grid point atmospheric general circulation model. Adv. Atmos. Sci. 13, 269–298 (1996)

    Article  Google Scholar 

  • Liang, X.Z., Zhang, F.: Cloud-Aerosol-Radiation (CAR) ensemble modeling system. Atmos. Chem. Phys. 13, 8335–8364 (2013)

    Article  Google Scholar 

  • Mellor, G.L.: User’s Guide for a Three-Dimensional, Primitive Equation, Numerical Ocean Model. Available on the Princeton Ocean Model web site (1998)

    Google Scholar 

  • Mellor, G.L., Yamada, T.: Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys. Space Phys. 20, 851–875 (1982)

    Article  Google Scholar 

  • Niiler, P.P., Kraus, E.B.: One-dimensional models. In: Kraus, E.B. (ed.) Modeling and Prediction of the Upper Layers of the Ocean. Pergamon, New York, 143–172 1977

    Google Scholar 

  • Onogi, K., et al.: The JRA-25 reanalysis. J. Meteor. Soc. Japan 85, 369–432 (2007)

    Google Scholar 

  • Oreopoulos, L., et al.: The continual intercomparison of radiation codes: results from phase I. J. Geophys. Res. 117, D06118 (2012). doi:10.1029/2011JD016821

    Google Scholar 

  • Phillips, N.A.: A coordinate system having some special advantages for numerical forecasting. J. Meteor. 14, 184–185 (1957)

    Article  Google Scholar 

  • Pincus, R., Barker, H.W., Morcrette, J.J.: A fast, flexible, approximate technique for computing radiative transfer in inhomogeneous cloud fields. J. Geophys. Res. 108, 4376 (2003). doi:10.1029/2002JD003322

    Article  Google Scholar 

  • Polvani, L.M., Scott, R.K., Thomas, S.J.: Numerically converged solutions of the global primitive equations for testing the dynamical core of atmospheric GCMs. Mon. Wea. Rev. 132, 2539–2552 (2004)

    Article  Google Scholar 

  • Price, J.F., Weller, R.A., Pinkel, R.: Diurnal cycling: observations and models of the upper ocean response to diurnal heating, cooling, and wind mixing. J. Geophys. Res. 91, 8411–8427 (1986)

    Article  Google Scholar 

  • Räisänen, P., Barker, H.W., Khairoutdinov, M.F., Li, J., Randall, D.A.: Stochastic generation of subgrid-scale cloudy columns for large-scale models. Quart. J. Roy. Meteor. Soc. 130, 2047–2067 (2004)

    Article  Google Scholar 

  • Rayner, N.A., Parker, D.E., Horton, E.B., Folland, C.K., Alexander, L.V., Rowell, D.P., Kent, E.C., Kaplan, A.: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res. 108, 4407 (2003). doi:10.1029/2002JD002670

    Article  Google Scholar 

  • Schneider, U., et al.: GPCC Full Data Reanalysis Version 6.0 at 0.5°: Monthly Land-Surface Precipitation from Rain-Gauges built on GTS-based and Historic Data (2011). doi:10.5676/DWD_GPCC/FD_M_V6_050

  • Slingo, J.M.: The development and verification of a cloud prediction scheme for the ECMWF model. Quart. J. Roy. Meteor. Soc. 113, 899–927 (1987)

    Article  Google Scholar 

  • Su, T.H., Xue, F.: The intraseasonal variation of summer monsoon circulation and rainfall in East Asia. Chin. J. Atmos. Sci. 34, 611–628 (2010) (in Chinese)

    Google Scholar 

  • Su, T.H., Xue, F.: Two northward jumps of the summertime western Pacific subtropical high and their associations with the tropical SST anomalies. Atmos. Ocean Sci. Lett. 4, 98–102 (2011)

    Article  Google Scholar 

  • Su, T., Xue, F., Zhang, H.: Simulating the intraseasonal variation of the East Asian summer monsoon by IAP AGCM4.0. Adv. Atmos. Sci. 31(3), 570–580 (2014)

    Article  Google Scholar 

  • Umscheid Jr, L., Sankar-Rao, M.: Further tests of a grid system for global numerical prediction. Mon. Wea. Rev. 99, 686–690 (1971)

    Article  Google Scholar 

  • Uppala, S., et al.: The ERA-40 re-analysis. Quart. J. Roy. Meteor. Soc. 107(612), 2961–3012 (2005)

    Google Scholar 

  • Uppala, S.M., Dee, D.P., Kobayashi, S., Berrisford, P., Simmons, A.J.: Towards a climate data assimilation system: status update of ERA-Interim. ECMWF Newsl. 115, 12–18 (2008)

    Google Scholar 

  • Wallcraft, A.J., Metzger, E.J., Carroll, S.N.: Software Design Description for the Hybrid Coordinate Ocean Model (HYCOM) Version 2.2. NRL/MR/7320–09–9166, Naval Research Laboratory (2009). http://www.hycom.org

  • Wang, H.J.: The weakening of the Asian monsoon circulation after the end of 1970s. Adv. Atmos. Sci. 18, 376–386 (2001)

    Article  Google Scholar 

  • Wang, T., Wang, H.J.: Mid-Holocene Asian summer climate and its responses to cold ocean surface simulated in the PMIP2 OAGCMs experiments. J. Geophys. Res. 118, 4117–4128 (2013)

    Article  Google Scholar 

  • Wehner, M., Oliker, L., Shalf, J.: Towards Ultra-High resolution models of climate and weather. Int. J. High Perform. Comput. Appl. 22(2), 149–165 (2008)

    Article  Google Scholar 

  • Williamson, D.L.: The evolution of dynamical core for global atmospheric models. J. Meteor. Soc. Japan 85B, 241–269 (2007)

    Article  Google Scholar 

  • Xu, K.M., Randall, D.A.: A semiempirical cloudiness parameterization for use in climate models. J. Atmos. Sci. 53, 3084–3102 (1996)

    Article  Google Scholar 

  • Xu, X.D., Shi, X.H., Xie, L.A., Wang, Y.F.: Consistency of interdecadal variation in the summer monsoon over eastern China and heterogeneity in springtime surface air temperatures. J. Meteor. Soc. Japan 85A, 311–323 (2007)

    Article  Google Scholar 

  • Xue, F.: Interannual to interdecadal variation of East Asian summer monsoon and its association with the global atmospheric circulation and sea surface temperature. Adv. Atmos. Sci. 18, 567–575 (2001)

    Article  Google Scholar 

  • Xue, F., Bi, X.Q., Lin, Y.H.: Modeling the global monsoon system by IAP 9L AGCM. Adv. Atmos. Sci. 18, 404–412 (2001)

    Article  Google Scholar 

  • Yang, X.Q., Xie, Q., Zhu, Y.M., Sun, X.G., Guo, Y.J.: Decadal to interdecadal variability of precipitation in North China and associated atmospheric and oceanic anomaly patterns. Chinese J. Geophys. 48, 789–797 (2005) (in Chinese)

    Google Scholar 

  • Yu, R.C., Zhou, T.J., Li, J., Xin, X.G.: Progress in the studies of three-dimensional structure of interdecadal climate change over Eastern China. Chin. J. Atmos. Sci. 32, 893–905 (2008) (in Chinese)

    Google Scholar 

  • Zeng, Q., et al.: Documentation of IAP Two-Level Atmospheric General Circulation Model. DOE/ER/60314-H1, TR044. 383 pp (1989)

    Google Scholar 

  • Zhang, H.: Development of IAP atmospheric general circulation model version 4.0 and its climate simulations. Ph.D. dissertation, Institute of Atmospheric Physics, Chinese Academy of Sciences, 194 pp. (2009) (in Chinese)

    Google Scholar 

  • Zhang, H., Lin, Z.H., Zeng, Q.C.: The computational scheme and the test for dynamical framework of IAP AGCM-4. Chin. J. Atmos. Sci. 33, 1267–1285 (2009). (in Chinese)

    Google Scholar 

  • Zhang, F., Liang, X.Z., Zeng, Q.C., Gu, Y., Su, S.J.: Cloud-Aerosol-Radiation (CAR) ensemble modeling system: overall accuracy and efficiency. Adv. Atmos. Sci. 30, 955–973 (2013a)

    Article  Google Scholar 

  • Zhang, F., Liang, X.Z., Li, J., Zeng, Q.C.: Dominant roles of subgrid-scale cloud structures in model diversity of cloud radiative effects. J. Geophys. Res. 118, 7733–7749 (2013b)

    Google Scholar 

  • Zhang, H., Zhang, M., Zeng, Q.C.: Sensitivity of simulated climate to two atmospheric models: interpretation of differences between dry models and moist models. Mon. Wea. Rev. 141, 1558–1576 (2013c)

    Article  Google Scholar 

  • Zhou, T.J., Wu, B., Wang, B.: How well do atmospheric general circulation models capture the leading modes of the interannual variability of the Asian-Australian monsoon? J. Clim. 22, 1159–1173 (2009)

    Article  Google Scholar 

  • Zuo, R.: Development of new generation grid point atmospheric general circulation model with high resolution. Ph.D. dissertation, China People’s Liberation Army University of Science and Technology, 328 pp. (2003) (in Chinese)

    Google Scholar 

  • Zuo, R.T., Zhang, M., Zhang, D.L., Wang, A.H., Zeng, Q.C.: Designing and climatic numerical modeling of 21-Level AGCM (IAP AGCM-III). Part I: Dynamical framework. Chin. J. Atmos. Sci. 28, 659–674 (2004) (in Chinese)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangqing Zhou .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Zhou, G., Zhang, H., Zhang, F., Xie, J., Xue, F., You, X. (2016). Studies on High-Resolution Atmospheric and Oceanic General Circulation Models. In: Development and Evaluation of High Resolution Climate System Models. Springer, Singapore. https://doi.org/10.1007/978-981-10-0033-1_2

Download citation

Publish with us

Policies and ethics